Skip to main content
Log in

Sequential Pareto Subdifferential Sum Rule for Convex Set-Valued Mappings and Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a general description of the Pareto subdifferential (weak and proper) of the sum of two cone-convex set-valued mappings in terms of sequences without any constraint qualifications. As an application, we derive sequential Lagrange multipliers optimality conditions for general set-valued optimization problem in terms of sequential Lagrange multipliers at nearby points for the Pareto efficient solutions, where no constraint qualification is assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P., Cellina, A.: Differential Inclusions. Set-Valued Maps and Viability Theory, Grundlehren Math, vol. 264. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  2. Baier, J.: On subdifferential of set-valued maps. J. Optim. Theory. 100, 233–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boţ, R.I., Csetnek, E.R., Wanka, G.: Sequential optimality conditions for composed convex optimization problems. J. Math. Anal. Appl. 342, 1015–1025 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Echchaabaoui, E., Laghdir, M.: Strong subdifferential calculus for convex set-valued mappings and applications to set optimization. Appl. Set-Valued Anal. Optim. 4, 223–237 (2022)

    Google Scholar 

  5. El Maghri, M., Laghdir, M.: Pareto subdifferential calculus for convex vector mappings and applications to vector optimization. SIAM J. Optim. 19(4), 1970–1994 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fajri, Y., Laghdir, M., Hassouni, A.: Formulas for sequential Pareto subdifferentials of the sums of vector mappings and applications to optimality conditions. Appl. Math. E-Notes 18, 318–333 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Gutiérrez, C., Huerga, L., Novo, V., Thibault, L.: Sequential \(\varepsilon \)-subdifferential calculus for scalar and vector mappings. Set-Valued Var. Anal. 25, 383–403 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ha, T.X.D.: Lagrange multipliers for set-valued optimization problems associated with coderivatives. J. Math. Anal. Appl. 311, 647–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hiriart-Urruty, J.B., Moussaoui, M., Seeger, A., Volle, M.: Subdifferential calculus without qaulification conditions, using approximate subdifferentials. Nonlinear Anal. Theory Methods Appl. 24(12), 1727–175 (1995)

    Article  MATH  Google Scholar 

  10. Jeyakumar, V., Lee, G., Dinh, N.: New sequential Lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14(2), 534–547 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khan, A., Tammer, A., Zălinescu, C.: Set-Valued Optimization. An Introduction with Applications. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  12. Laghdir, M., Echchaabaoui, E.: Pareto subdifferential calculus for convex set-valued mappings and applications to set optimization. J. Appl. Numer. Optim. (2022). https://doi.org/10.23952/jano.4.2022.3.02

    Article  Google Scholar 

  13. Laghdir, M., Rikouane, A., Fajri, Y.A., Tazi, E.: Sequential Pareto subdifferential sum rule and sequential efficiency. Appl. Math. E-Notes 16, 133–143 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Laghdir, M., Rikouane, A., Fajri, Y.A., Tazi, E.: Sequential Pareto subdifferential composition rule and sequential efficiency. J. Nonlinear Convex Anal. 18, 2177–2187 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Lin, J.: Optimization of set-valued functions. J. Math. Anal. Appl. 186(1), 30–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

    Google Scholar 

  17. Penot, J.: Subdifferential calculus without qualification assumptions. J. Convex Anal. 3, 207–219 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Sisarat, N., Wangkeeree, R., Tanaka, T.: Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps. J. Glob. Optim. 77, 273–287 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thibault, L.: A generalized sequential formula for subdifferentials of sums of convex functions defined on Banach spaces. In: Durier, R., Michelot, C. (eds.) Recent Developments in Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 429, pp. 340–345. Springer, Berlin (1995)

    Chapter  Google Scholar 

  20. Thibault, L.: Sequential convex subdifferential calculus and sequential Lagrange multipliers. SIAM J. Control Optim. 35, 1434–1444 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taa, A.: On subdifferential calculus for set-valued mappings and optimality conditions. Nonlinear Anal. 74(18), 7312–7324 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Laghdir.

Additional information

Communicated by Akhtar A. Khan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laghdir, M., Echchaabaoui, E.M. Sequential Pareto Subdifferential Sum Rule for Convex Set-Valued Mappings and Applications. J Optim Theory Appl 198, 1226–1245 (2023). https://doi.org/10.1007/s10957-023-02255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02255-8

Keywords

Mathematics Subject Classification

Navigation