Skip to main content
Log in

On an Optimal Control Problem Describing Lactate Transport Inhibition

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, the effect of inhibition of monocarboxylate transporters on intracellular and capillary lactate concentrations is investigated using an optimal control problem. A control term representing the concentration of the inhibitor is used in an ODE model that models lactate kinetics between the cell and the capillary. Finally, some numerical simulations were performed to confirm the efficiency of the control term for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alsayed, H., Fakih, H., Miranville, A., Wehbe, A.: On an optimal control problem describing lactate production inhibition. Appl. Anal., 1–21 (2021)

  2. Aubert, A., Costalat, R.: A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Neuroimage 17(3), 1162–1181 (2002)

    Article  Google Scholar 

  3. Aubert, A., Costalat, R.: Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J. Cerebral Blood Flow Metab. 25(11), 1476–1490 (2005)

    Article  Google Scholar 

  4. Aubert, A., Costalat, R., Magistretti, P.J., Pellerin, L.: Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. Proc. Natl. Acad. Sci. 102(45), 16448–16453 (2005)

    Article  Google Scholar 

  5. Bartrons, R., Caro, J.: Hypoxia, glucose metabolism and the Warburg’s effect. J. Bioenerg. Biomembr. 39(3), 223–229 (2007)

    Article  Google Scholar 

  6. Benjamin, D., Robay, D., Hindupur, S.K., Pohlmann, J., Colombi, M., El-Shemerly, M.Y., Maira, S.-M., Moroni, C., Lane, H.A., Hall, M.N.: Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep. 25(11), 3047-3058.e4 (2018)

    Article  Google Scholar 

  7. Chesnelong, C., Chaumeil, M.M., Blough, M.D., Al-Najjar, M., Stechishin, O.D., Chan, J.A., Pieper, R.O., Ronen, S.M., Weiss, S., Luchman, H.A., Cairncross, J.G.: Lactate dehydrogenase a silencing in IDH mutant gliomas. Neuro Oncol. 16(5), 686–695 (2013)

    Article  Google Scholar 

  8. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  9. Costalat, R., Francoise, J.-P., Menuel, C., Lahutte, M., Vallée, J.-N., de Marco, G., Chiras, J., Guillevin, R.: Mathematical modeling of metabolism and hemodynamics. Acta. Biotheor. 60(1–2), 99–107 (2012)

    Article  Google Scholar 

  10. Daniele, S., Giacomelli, C., Zappelli, E., Granchi, C., Trincavelli, M.L., Minutolo, F., Martini, C.: Lactate dehydrogenase-a inhibition induces human glioblastoma multiforme stem cell differentiation and death. Sci. Rep., 5(1), (2015)

  11. de la Cruz-López, K.G., Castro-Muñoz, L.J., Reyes-Hernández, D.O.,García-Carrancá, A., Manzo-Merino, J.: Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol. (2019)

  12. Di, H., Zhang, X., Guo, Y., Shi, Y., Fang, C., Yuan, Y., Wang, J., Shang, C., Guo, W., Li, C.: Silencing LDHA inhibits proliferation, induces apoptosis and increases chemosensitivity to temozolomide in glioma cells. Oncol. Lett. (2018)

  13. Doherty, J.R., Cleveland, J.L.: Targeting lactate metabolism for cancer therapeutics. J. Clin. Investig. 123(9), 3685–3692 (2013)

    Article  Google Scholar 

  14. Feng, Y., Xiong, Y., Qiao, T., Li, X., Jia, L., Han, Y.: Lactate dehydrogenase a: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7(12), 6124–6136 (2018)

    Article  Google Scholar 

  15. Fleming, W., Rishel, R.: Deterministic and Stochastic Optimal Control, 1st edn. Springer, New York (1975)

    Book  MATH  Google Scholar 

  16. Guillevin, C., Guillevin, R., Miranville, A., Perrillat-Mercerot, A.: Analysis of a mathematical model for brain lactate kinetics. Math. Biosci. Eng. 15(5), 1225–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guillevin, C., Guillevin, R., Miranville, A., Perrillat-Mercerot, A.: Analysis of a mathematical model for brain lactate kinetics. Math. Biosci. Eng. 15(5), 1225–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guillevin, R., Menuel, C., Vallée, J.-N., Françoise, J.-P., Capelle, L., Habas, C., Marco, G.D., Chiras, J., Costalat, R.: Mathematical modeling of energy metabolism and hemodynamics of WHO grade II gliomas using in vivo MR data. C.R. Biol. 334(1), 31–38 (2011)

    Article  Google Scholar 

  19. Han, W., Shi, J., Cao, J., Dong, B., Guan, W.: Emerging roles and therapeutic interventions of aerobic glycolysis in glioma. OncoTargets Therapy 13, 6937–6955 (2020)

    Article  Google Scholar 

  20. Holbrook, J., Gutfreund, H.: Approaches to the study of enzyme mechanisms lactate dehydrogenase. FEBS Lett. 31(2), 157–169 (1973)

    Article  Google Scholar 

  21. Hsu, P.P., Sabatini, D.M.: Cancer cell metabolism: Warburg and beyond. Cell 134(5), 703–707 (2008)

    Article  Google Scholar 

  22. Le, A., Cooper, C.R., Gouw, A.M., Dinavahi, R., Maitra, A., Deck, L.M., Royer, R.E., Jagt, D.L.V., Semenza, G.L., Dang, C.V.: Inhibition of lactate dehydrogenase a induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. 107(5), 2037–2042 (2010)

    Article  Google Scholar 

  23. Lea, M., Guzman, Y., Desbordes, C.: Inhibition of growth by combined treatment with inhibitors of lactate dehydrogenase and either phenformin or inhibitors of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3. Anticancer Res. 36, 1479–1488 (2016)

    Google Scholar 

  24. Liu, Y., Sun, Y., Guo, Y., Shi, X., Chen, X., Feng, W., Wu, L.-L., Zhang, J., Yu, S., Wang, Y., Shi, Y.: An overview: the diversified role of mitochondria in cancer metabolism. Int. J. Biol. Sci. 19(3), 897–915 (2023)

    Article  Google Scholar 

  25. Romero-Garcia, S., Moreno-Altamirano, M.M.B., Prado-Garcia, H., Sánchez-García, F.J.: Lactate contribution to the tumor microenvironment: Mechanisms, effects on immune cells and therapeutic relevance. Front. Immunol. (2016)

  26. Seliger, C., Leukel, P., Moeckel, S., Jachnik, B., Lottaz, C., Kreutz, M., Brawanski, A., Proescholdt, M., Bogdahn, U., Bosserhoff, A.-K., Vollmann-Zwerenz, A., Hau, P.: Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS ONE 8(11), e78935 (2013)

    Article  Google Scholar 

  27. Valabrègue, R., Aubert, A., Burger, J., Bittoun, J., Costalat, R.: Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. J. Cerebral Blood Flow Metab. 23(5), 536–545 (2003)

    Article  Google Scholar 

  28. Xian, Z.-Y., Liu, J.-M., Chen, Q.-K., Chen, H.-Z., Ye, C.-J., Xue, J., Yang, H.-Q., Li, J.-L., Liu, X.-F., Kuang, S.-J.: Inhibition of LDHA suppresses tumor progression in prostate cancer. Tumor Biology 36(10), 8093–8100 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their careful reading of the article and useful comments.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contributions in this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hawraa Alsayed.

Additional information

Communicated by Alberto D’Onofrio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 2.2

Proof

  • The solution is nonnegative. System (1.4)–(1.6) can be viewed as

    $$\begin{aligned} \begin{array}{lll} u^{\prime }(t)=f(t,u(t),v(t)) \\ v^{\prime }(t) =g(t,u(t),v(t)). \end{array} \end{aligned}$$

Using Assumption (E), for \(u=0,\, v\ge 0\), then

$$\begin{aligned} f(t,0,v) =J +\kappa \dfrac{v}{k^{\prime }+v}\ge 0. \end{aligned}$$

For \(u\ge 0,\, v=0\) and using Assumption (E), see that F is a positive function and \(L >0\). Thus,

$$\begin{aligned} g(t,u,0) = \frac{FL}{\epsilon } + \frac{\kappa }{\epsilon }(1-\gamma w)\dfrac{u}{k +u}\ge 0. \end{aligned}$$

Hence, the system is quasipositive and so the solution

$$\begin{aligned} (u,v)\in \mathbb {R}_{+}\times \mathbb {R}_{+}\quad \forall \, t>0. \end{aligned}$$
  • Existence of solution.

System (1.4)–(1.6) can be rewritten in the form

$$\begin{aligned} \left\{ \begin{array}{lll} X^{\prime }(t)=F(t,X(t)) \\ X(0)=X_0, \end{array}\right. \end{aligned}$$

where \(X(t):=(u(t),v(t))\) and \(F(t,X(t)):= (f(t,u,v),g(t,u,v))\). We know that for nonnegative \(u_1\) and \(u_2\)

$$\begin{aligned} \dfrac{u_1}{k+u_1}-\dfrac{u_2}{k +u_2}=\dfrac{u_1(k+u_2)-u_2(k+u_1)}{(k+u_1)(k+u_2)} =\dfrac{k(u_1-u_2)}{(k+u_1)(k+u_2)} \end{aligned}$$

and for nonnegative \(v_1\) and \(v_2\)

$$\begin{aligned} \dfrac{v_1}{k^{\prime }+v_1}-\dfrac{v_2}{k^{\prime } +v_2}\hspace{0.5cm} = \dfrac{k^{\prime }(v_1-v_2)}{(k^{\prime }+v_1)(k^{\prime }+v_2)}. \end{aligned}$$

As well, using Assumption (E), we have

$$\begin{aligned} \begin{array}{cc} \displaystyle \left| J(t,u_1)- J(t,u_2) -\kappa (1-\gamma w)\dfrac{k(u_1-u_2)}{(k+u_1)(k+u_2)} +\kappa \dfrac{k^{\prime }(v_1-v_2)}{(k^{\prime }+v_1)(k^{\prime }+v_2)}\right| \\ \displaystyle \lesssim |u_1-u_2| +|v_1-v_2| \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{cc} \displaystyle \dfrac{1}{\epsilon }\left| F(v_1-v_2) +\kappa (1-\gamma w)\dfrac{k(u_1-u_2)}{(k+u_1)(k+u_2)} -\kappa \dfrac{k^{\prime }(v_1-v_2)}{(k^{\prime }+v_1)(k^{\prime }+v_2)}\right| \\ \displaystyle \lesssim |u_1-u_2| +|v_1-v_2| \end{array} \end{aligned}$$

We deduce that F is globally Lipschitz with respect to u and v, so System (1.4)–(1.6) admits a unique solution \((u,v)\in C^1([0,T],\mathbb {R}_{+})^2\).

  • Continuous dependence on control.

Let \(w_1, w_2\) be two controls in \(\mathcal {W}_{ad}\) and \((u_1,v_1)\), \((u_2,v_2)\) be their corresponding solutions of System (1.4)–(1.6) with same initial data. Set \(u=u_1-u_2\), \(v = v_1 - v_2\), and \(w= w_1 -w_2\), then we have

$$\begin{aligned}{} & {} u^{\prime } =J(t,u_1) - J(t,u_2) -\kappa \left( \dfrac{ku}{(k+u_1)(k+u_2)}\right. \nonumber \\{} & {} \left. -\gamma \dfrac{k\left( w_1 u +u_2 w\right) +w u_1u_2}{(k+u_1)(k+u_2)} -\dfrac{k^{\prime }v}{(k^{\prime }+v_1)(k^{\prime }+v_2)}\right) \end{aligned}$$
(A.1)

and

$$\begin{aligned} \epsilon v^{\prime } =-F v + \kappa \left( \dfrac{ku}{(k+u_1)(k+u_2)} -\gamma \dfrac{k\left( w_1 u +u_2 w\right) +w u_1u_2}{(k+u_1)(k+u_2)} -\dfrac{k^{\prime }v}{(k^{\prime }+v_1)(k^{\prime }+v_2)}\right) . \end{aligned}$$
(A.2)

Step one. Multiply Equation (A.1) by u in \(\mathbb {R_{+}}\), we find

$$\begin{aligned} \displaystyle ((u^{\prime },u))= & {} \left( \left( J(t,u_1) - J(t,u_2),u\right) \right) \\{} & {} -\kappa \left( \left( \dfrac{ku}{(k+u_1)(k+u_2)},u\right) \right) -\kappa \gamma \left( \left( \dfrac{wu_1u_2}{(k+u_1)(k+u_2)},u\right) \right) \\{} & {} -\kappa \gamma \left( \left( \dfrac{k\left( w_1 u +u_2 w\right) }{(k+u_1)(k+u_2)},u\right) \right) \\{} & {} -\kappa \left( \left( \dfrac{k^{\prime }v}{(k^{\prime }+v_1)(k^{\prime }+v_2)},u\right) \right) , \end{aligned}$$

Thanks to Cauchy–Schwarz inequality, we get

$$\begin{aligned} \displaystyle \dfrac{1}{2}\dfrac{\textrm{d}}{\textrm{d}t}\left\Vert u\right\Vert ^2\le & {} \left\Vert J(t,u_1) - J(t,u_2)\right\Vert \left\Vert u\right\Vert +\kappa k \left\Vert \dfrac{u}{(k+u_1)(k+u_2)}\right\Vert \left\Vert u\right\Vert \\{} & {} +\kappa \gamma \left\Vert \dfrac{wu_1u_2}{(k+u_1)(k+u_2)}\right\Vert \left\Vert u\right\Vert \\{} & {} +\kappa k \gamma \left\Vert \dfrac{w_1 u }{(k+u_1)(k+u_2)}\right\Vert \left\Vert u\right\Vert \\{} & {} +\kappa \gamma \left\Vert \dfrac{u_2 w}{(k+u_1)(k+u_2)}\right\Vert \left\Vert u\right\Vert +\kappa k^{\prime }\left\Vert \dfrac{k^{\prime }v}{(k^{\prime }+v_1)(k^{\prime }+v_2)}\right\Vert \left\Vert u\right\Vert . \end{aligned}$$

Now using Assumption (E) and Young’s inequality, we have

$$\begin{aligned} \dfrac{\textrm{d}}{\textrm{d}t}\left\Vert u\right\Vert ^2 \lesssim \left\Vert u\right\Vert ^2 + \left\Vert w\right\Vert ^2 +\left\Vert v\right\Vert ^2. \end{aligned}$$
(A.3)

On the other hand, multiplying Equation (A.2) by v in \(\mathbb {R}_+\), using Assumption (E) and Young’s inequality, we get

$$\begin{aligned} \dfrac{\textrm{d}}{\textrm{d}t}\left\Vert v\right\Vert ^2 \lesssim \left\Vert u\right\Vert ^2 + \left\Vert w\right\Vert ^2 +\left\Vert v\right\Vert ^2. \end{aligned}$$
(A.4)

Combining Equation (A.3) and Equation (A.4), then integrating over [0, t], where \(t \in [0,T]\), we get

$$\begin{aligned} \left\Vert u(t)\right\Vert ^2 +\left\Vert v(t)\right\Vert ^2 \lesssim \int _0^t\left\Vert w(s)\right\Vert ^2\textrm{d}s +\int _0^t\left( \left\Vert u(s)\right\Vert ^2 +\left\Vert v(s)\right\Vert ^2\right) \textrm{d}s. \end{aligned}$$

So, owing to Gronwall’s inequality, we obtain

$$\begin{aligned} \left\Vert u(t)\right\Vert ^2 +\left\Vert v(t)\right\Vert ^2 \lesssim \left\Vert w\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}e^{ct},\quad t\in [0,T]. \end{aligned}$$
(A.5)

On the other hand, since

$$\begin{aligned} \left\Vert u\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)} =\int _0^t \left\Vert u(s)\right\Vert ^2 \textrm{d}s, \end{aligned}$$

then, using Equation (A.5), we find

$$\begin{aligned} \int _0^t \left\Vert u(s)\right\Vert ^2 \textrm{d}s \lesssim \int _0^t \left\Vert w\right\Vert ^2_{L^2(0,s;\mathbb {R}_+)}e^{cs} \textrm{d}s\lesssim \left\Vert w\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}(e^{ct}-1), \quad \forall t\in [0,T]. \end{aligned}$$
(A.6)

Similarly, we have

$$\begin{aligned} \left\Vert v\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}\lesssim \left\Vert w\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}(e^{ct}-1). \end{aligned}$$
(A.7)

Step two. Similarly to step one, multiplying Equation (A.1) and Equation (A.2) by \(u^{\prime }\) and \(v^{\prime }\), respectively, we get

$$\begin{aligned} \begin{array}{lll} \displaystyle \left\Vert u^{\prime }\right\Vert ^2 \le \displaystyle \left\Vert J(t,u_1) -J(t,u_2)\right\Vert \left\Vert u^{\prime }\right\Vert + c\left\Vert u\right\Vert \left\Vert u^{\prime }\right\Vert +c\left\Vert w\right\Vert \left\Vert u^{\prime }\right\Vert +c\left\Vert v\right\Vert \left\Vert u^{\prime }\right\Vert \\ \displaystyle \lesssim \left\Vert u\right\Vert \left\Vert u^{\prime }\right\Vert +\left\Vert w\right\Vert \left\Vert u^{\prime }\right\Vert +\left\Vert v\right\Vert \left\Vert u^{\prime }\right\Vert . \end{array} \end{aligned}$$

Let \(\delta >0\). Applying Young’s inequality, we obtain

$$\begin{aligned} (1-c \delta )\left\Vert u^{\prime }\right\Vert ^2 \displaystyle \lesssim \left\Vert u\right\Vert ^2 +\left\Vert w\right\Vert ^2 +\left\Vert v\right\Vert ^2. \end{aligned}$$

where \(c >0\) is a constant independent of \(\delta \). Choosing \(\delta<<1\) so that \(1 -c \delta =\dfrac{1}{2}\), we obtain

$$\begin{aligned} \dfrac{1}{2}\left\Vert u^{\prime }\right\Vert ^2 \displaystyle \lesssim \left\Vert u\right\Vert ^2 +\left\Vert w\right\Vert ^2 +\left\Vert v\right\Vert ^2. \end{aligned}$$
(A.8)

By similar way, we obtain

$$\begin{aligned} \epsilon \left\Vert v^{\prime }\right\Vert ^2\lesssim \left\Vert v\right\Vert ^2 +c\left\Vert u\right\Vert ^2+\left\Vert w\right\Vert ^2. \end{aligned}$$
(A.9)

Further, integrating (A.8) and (A.9) over \([0,t], \, t\in [0,T]\), and using (A.5), we get

$$\begin{aligned} \begin{array}{lll} \displaystyle \left\Vert u^{\prime }\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})}\lesssim \left\Vert u\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})} +\left\Vert v\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})} +\left\Vert w\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})} \\ \displaystyle \hspace{2.3cm}\lesssim \left\Vert w\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})} \end{array} \end{aligned}$$

and

$$\begin{aligned} \epsilon \left\Vert v^{\prime }\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})} \lesssim \left\Vert v\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})} +\left\Vert u\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})} +\left\Vert w\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})}, \end{aligned}$$

and hence,

$$\begin{aligned} \left\Vert v^{\prime }\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})}\lesssim \left\Vert w\right\Vert ^2_{L^2(0,t;\mathbb {R}_{+})}. \end{aligned}$$

\(\square \)

Proof of Theorem 4.1

Proof

Let \((U_1,V_1)\), \((U_2,V_2)\) be two solutions of System (4.1)–(4.3), which can be written in the form

$$\begin{aligned} X^{\prime }=H(t,X(t)), \end{aligned}$$

where \(X =(U,V)\) and \(H(t,U,V)=(F(t,U,V),G(t,U,V))\), we know that

$$\begin{aligned} \begin{array}{llll} \displaystyle \left| F(t,U_1,V_1)-F(t,U_2,V_2)\right| +\left| G(t,U_1,V_1)-G(t,U_2,V_2)\right| \\ \displaystyle =\left| J_u(t,u^{*})\left( U_1-U_2\right) -\kappa \left( (1-\gamma w_{*})\dfrac{k}{(k+u^{*})^2}-\dfrac{k^{\prime }}{(k^{\prime }+v^{*})^2}\left( V_1-V_2\right) \right) \right| \\ \displaystyle \quad +\dfrac{1}{\epsilon }\left| F(V_1-V_2)+ \kappa \left( (1-\gamma w_{*})\dfrac{k}{(k+u^{*})^2}-\dfrac{k^{\prime }}{(k^{\prime }+v^{*})^2}\left( V_1-V_2\right) \right) \right| \\ \displaystyle \le \left( \left| \left| J_u\right| \right| _{\infty }+ \left( \kappa +\dfrac{\kappa }{\epsilon }\right) \right) \left| U_1-U_2\right| + \left( \kappa +\dfrac{\kappa }{\epsilon }\right) \left| V_1-V_2\right| \\ \displaystyle \le \left( \left| \left| J_u\right| \right| _{\infty }+ \left( \kappa +\dfrac{\kappa }{\epsilon }\right) \right) \left| \left| U_1-U_2,V_1-V_2\right| \right| , \end{array} \end{aligned}$$

which yields that H is Lipchitz with respect to X, and therefore, System (4.1)–(4.3) admits a unique solution \((U,V)\in C^1([0,T],\mathbb {R}_+)^2\) (see [8]). \(\square \)

Proof of Theorem 5.1

Proof

The remainders \(\rho _h\) and \(\theta _h\) satisfy

$$\begin{aligned} \begin{array}{llll} \displaystyle \rho ^{\prime } = J(t,u_h)-J(t,u_{*}) -J_uU -\kappa \left( (1-\gamma w_{*})\left( \dfrac{u_h}{k+u_h} -\dfrac{u_{*}}{k +u_{*}} -\dfrac{k}{(k +u_{*})^2}U\right) \right) \\ \displaystyle \hspace{0.5cm} +\kappa \left( \dfrac{v_h}{k^{\prime }+v_h} -\dfrac{v_{*}}{k^{\prime } +v_{*}} -\dfrac{k^{\prime }}{(k^{\prime } +v_{*})^2}V+ \gamma h\left( \dfrac{u_h}{k +u_h}-\dfrac{u_{*}}{k +u_{*}}\right) \right) \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{llll} \displaystyle \epsilon \theta _h^{\prime } =-F\theta _h +\kappa \left( (1-\gamma w_{*})\left( \dfrac{u_h}{k +u_h} -\dfrac{u_{*}}{k +u_{*}} -\dfrac{k}{(k +u_{*})^2}U\right) \right) \\ \displaystyle \hspace{0.5cm}-\kappa \left( \left( \dfrac{v_h}{k^{\prime } +v_h} -\dfrac{v_{*}}{k^{\prime } +v_{*}} -\dfrac{k^{\prime }}{(k^{\prime } +v_{*})^2}V\right) -\gamma h \left( \dfrac{u_h}{k +u_h}-\dfrac{u_{*}}{k +u_{*}}\right) \right) . \end{array} \end{aligned}$$

Setting \(f(u) =\dfrac{k}{k +u}\) and \(g(v) =\dfrac{k^{\prime }}{k^{\prime }+v}\), Taylor with integral remainder gives

$$\begin{aligned} f(u_h) -f(u_{*}) -f^{\prime }(u_{*})U =f^{\prime }(u_{*})\rho +\left( u_h -u_{*}\right) ^2\int _0^1 f^{\prime \prime }\left( zu_h +(1 -z)u_{*}\right) \left( 1-z\right) dz \end{aligned}$$

and

$$\begin{aligned} g(v_h) -g(v_{*}) -g^{\prime }(v_{*})V =g^{\prime }(v_{*})\theta +\left( v_h -v_{*}\right) ^2\int _0^1 g^{\prime \prime }\left( zv_h +(1 -z)v_{*}\right) \left( 1-z\right) dz. \end{aligned}$$

However, the remainders

$$\begin{aligned} R_1:=\int _0^1 f^{\prime \prime }\left( zu_h +(1 -z)u_{*}\right) \left( 1-z\right) dz \quad \text{ and }\quad R_2:= \int _0^1 g^{\prime \prime }\left( zv_h +(1 -z)v_{*}\right) \left( 1-z\right) dz, \end{aligned}$$

are bounded, so that

$$\begin{aligned} \left\Vert R_1\right\Vert _{\infty }\le c_{R_1} \quad \text{ and } \quad \left\Vert R_2\right\Vert _{\infty }\le c_{R_2} . \end{aligned}$$

Thus, \(\rho \) satisfies

$$\begin{aligned} \begin{array}{lll} \displaystyle \rho ^{\prime }_h =J_u(t,u_{*})\rho _h +(u_h -u_{*})^2R_1 -\kappa \left( (1-\gamma w_{*})\left( f^{\prime }(u_{*})\rho _h +(u_h -u_{*})^2R_1\right) \right) \\ \displaystyle \hspace{0.5cm} +\kappa \left( g^{\prime }(v_{*})\theta _h +(v_h -v_{*})^2R_2 +\gamma h\left( f(u_h)-f(u_{*})\right) \right) . \end{array} \end{aligned}$$

Equivalently, we have

$$\begin{aligned} \begin{array}{lll} \displaystyle \rho ^{\prime }_h =J_u(t,u_{*})\rho _h +(u_h -u_{*})^2R_1 -\kappa \left( (1-\gamma w_{*})\left( f^{\prime }(u_{*})\rho _h +(u_h -u_{*})^2R_1\right) \right) \\ \displaystyle \hspace{0.5cm} +\kappa \left( g^{\prime }(v_{*})\theta _h +(v_h -v_{*})^2R_2 +\gamma h\left( f^{\prime }(u_{*})\left( u_h -u_{*}\right) \right) +(u_h -u_{*})^2R_1\right) \end{array} \end{aligned}$$
(A.10)

and \(\theta \) satisfies

$$\begin{aligned} \begin{array}{lll} \epsilon \theta ^{\prime }_h = -F\theta _h +\kappa (1-\gamma w_{*})\left( f^{\prime }(u_{*})\rho _h +\left( u_h -u_{*}\right) ^2R_1\right) \\ \displaystyle \hspace{0.5cm} -\kappa \left( g^{\prime }(v_{*})\theta _h +(v_h -v_{*})^2R_2 +\gamma h\left( f(u_h)-f(u_{*})\right) \right) . \end{array} \end{aligned}$$

which is equivalent to

$$\begin{aligned} \epsilon \theta ^{\prime }_h= & {} -F\theta _h +\kappa (1-\gamma w_{*})\left( f^{\prime }(u_{*})\rho _h +\left( u_h -u_{*}\right) ^2R_1\right) -\kappa \left( g^{\prime }(v_{*})\theta _h \right. \nonumber \\{} & {} \left. +(v_h -v_{*})^2R_2 +\gamma h\left( f^{\prime }(u_{*})(u_h -u_{*}) +\left( u_h -u_{*}\right) ^2R_1\right) \right) . \end{aligned}$$
(A.11)

We need to prove some estimates.

Estimate 1. Multiplying (A.10) by \(\rho _h\) and (A.11) by \(\theta _h\), we find

$$\begin{aligned} ((\rho _h^{\prime }, \rho _h))&= ((J_u(t,u_{*})\rho _h,\rho _h)) +(((u_h -u_{*})^2R_1,\rho _h)) -\kappa (((1-\gamma w_{*})\\&\quad \times f^{\prime }(u_{*})\rho _h,\rho _h)) -\kappa (((1-\gamma w_{*})(u_h -u_{*})^2R_1,\rho _h))\\&\quad +\kappa ((g^{\prime }(v_{*})\theta _h,\rho _h)) +\kappa (((v_h -v_{*})^2R_2,\rho _h))\\&\quad +\kappa ((\gamma hf^{\prime }(u_{*})(u_h-u_{*}),\rho _h)) +\kappa ((h(u_h-u_{*})^2R_1,\rho _h))\\ \end{aligned}$$

and

$$\begin{aligned} ((\epsilon \theta ^{\prime }_h,\theta _h))&=-((F\theta _h,\theta _h)) +\kappa (((1-\gamma w_{*})f^{\prime }(u_{*})\rho _h,\theta _h)) \\&\quad +\kappa (((1-\gamma w_{*})(u_h -u_{*})^2R_1,\theta _h))-\kappa ((g^{\prime }(v_{*})\theta _h,\theta _h)) \\&\quad -\kappa (((v_h-v_{*})^2R_2,\theta _h))-\kappa ((\gamma h f^{\prime }(u_{*})(u_h -u_{*}),\theta _h)) \\&\quad -\kappa ((\gamma h(u_h-u_{*})^2R_1,\theta _h)). \end{aligned}$$

Consequently, after using Assumptions (E) and (F), and Cauchy–Schwarz inequality, we get

$$\begin{aligned} \begin{array}{llll} \displaystyle \dfrac{\textrm{d}}{\textrm{d}t}\left\Vert \rho _h\right\Vert ^2 \lesssim \left\Vert \rho _h\right\Vert ^2 +\left\Vert u_h -u_{*}\right\Vert ^2\left\Vert \rho _h\right\Vert +\left\Vert \theta _h\right\Vert \left\Vert \rho _h\right\Vert \\ \displaystyle \hspace{2cm} +c\left\Vert v_h -v_{*}\right\Vert ^2\left\Vert \rho _h\right\Vert +\left\Vert h\right\Vert \left\Vert u_h -u_{*}\right\Vert \left\Vert \rho _h\right\Vert \\ \displaystyle \hspace{2cm} +\left\Vert h(u_h-u_{*})^2\right\Vert \left\Vert \rho _h\right\Vert \end{array} \end{aligned}$$
(A.12)

and

$$\begin{aligned} \begin{array}{llll} \displaystyle \epsilon \dfrac{\textrm{d}}{\textrm{d}}\left\Vert \theta _h\right\Vert ^2 \lesssim \left\Vert \theta _h\right\Vert ^2 +\left\Vert \rho _h\right\Vert \left\Vert \theta _h\right\Vert +\left\Vert u_h -u_{*}\right\Vert ^2\left\Vert \theta _h\right\Vert \\ \displaystyle \hspace{2cm}+\left\Vert v_h -v_{*}\right\Vert ^2\left\Vert \theta _h\right\Vert +\left\Vert h\right\Vert \left\Vert u_h-u_{*}\right\Vert \left\Vert \theta _h\right\Vert \\ \displaystyle \hspace{2cm} +\left\Vert h(u_h-u_{*})^2\right\Vert \left\Vert \theta _h\right\Vert . \end{array} \end{aligned}$$
(A.13)

Combining (A.12) and (A.13), integrating over [0, t], and using Holder’s inequality, we get

$$\begin{aligned}{} & {} \displaystyle \left\Vert \rho _h(t)\right\Vert ^2 +\epsilon \left\Vert \theta _h(t)\right\Vert ^2 \lesssim \left\Vert \rho _h\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}\\{} & {} +\left\Vert \theta _h(s)\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)} +\left\Vert \theta _h\right\Vert _{L^2(0,t;\mathbb {R}_+)}\left\Vert \rho \right\Vert _{L^2(0,t;\mathbb {R}_+)} \\{} & {} +\left\Vert u_h -u_{*}\right\Vert _{L^{\infty }(0,t;\mathbb {R}_+)}\left\Vert u_h-u_{*}\right\Vert _{L^2(0,t;\mathbb {R}_+)}\left( \left\Vert \rho _h\right\Vert _{L^2(0,t;\mathbb {R}_+)} +\left\Vert \theta _h\right\Vert _{L^2(0,t;\mathbb {R}_+)}\right) \\{} & {} +\left\Vert v_h -v_{*}\right\Vert _{L^{\infty }(0,t;\mathbb {R}_+)}\left\Vert v_h -v_{*}\right\Vert _{L^2(0,t;\mathbb {R}_+)}\left( \left\Vert \rho _h\right\Vert _{L^2(0,t;\mathbb {R}_+)} +\left\Vert \theta _h\right\Vert _{L^2(0,t;\mathbb {R}_+)}\right) \\{} & {} +\left\Vert h\right\Vert _{L^2(0,t;\mathbb {R}_+)}\left\Vert u_h-u_{*}\right\Vert _{L^{\infty }(0,t;\mathbb {R}_+)}\left( \left\Vert \rho _h\right\Vert _{L^2(0,t;\mathbb {R}_+)} +\left\Vert \theta _h\right\Vert _{L^2(0,t;\mathbb {R}_+)}\right) \\{} & {} +\left\Vert h\right\Vert _{L^2(0,t;\mathbb {R}_+)}\left\Vert u_h-u_{*}\right\Vert ^2_{L^{\infty }(0,t;\mathbb {R}_+)}\left( \left\Vert \rho _h\right\Vert _{L^2(0,t;\mathbb {R}_+)} +\left\Vert \theta _h\right\Vert _{L^2(0,t;\mathbb {R}_+)}\right) .\\ \end{aligned}$$

Consequently, using Young’s inequality, Assumption (F), Equations (A.5), (A.6), and (A.7), we have

$$\begin{aligned} \begin{array}{llll} \displaystyle \left\Vert \rho _h(t)\right\Vert ^2 +\epsilon \left\Vert \theta _h(t)\right\Vert ^2 \lesssim c\left\Vert \rho _h\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}+ \left\Vert \theta _h\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}\\ \displaystyle \hspace{2cm}+c\left\Vert h\right\Vert ^4_{L^2(0,t;\mathbb {R}_+)} +\left\Vert h\right\Vert ^6_{L^2(0,t;\mathbb {R}_+)}\\ \displaystyle \hspace{2cm}\lesssim \left\Vert h\right\Vert ^4_{L^2(0,t;\mathbb {R}_+)}. \end{array} \end{aligned}$$
(A.14)

Estimate 2. Multiplying (A.10) by \(\rho ^{\prime }_h\), and (A.11) by \(\theta ^{\prime }_h\), we find

$$\begin{aligned} \displaystyle ((\rho _h^{\prime }, \rho _h^{\prime }))= & {} ((J_u(t,u_{*})\rho _h,\rho _h^{\prime })) +(((u_h -u_{*})^2R_1,\rho _h^{\prime })) \\{} & {} -\kappa (((1-\gamma w_{*})f^{\prime }(u_{*})\rho _h,\rho _h^{\prime }))-\kappa (((1-\gamma w_{*})(u_h -u_{*})^2R_1,\rho _h^{\prime }))\\{} & {} +\kappa ((g^{\prime }(v_{*})\theta _h,\rho _h^{\prime })) +\kappa (((v_h -v_{*})^2R_2,\rho _h^{\prime }))\\{} & {} \displaystyle +\kappa ((\gamma hf^{\prime }(u_{*})(u_h-u_{*}),\rho _h^{\prime })) +\kappa ((h(u_h-u_{*})^2R_1,\rho _h^{\prime })) \end{aligned}$$

and

$$\begin{aligned} \displaystyle ((\epsilon \theta ^{\prime }_h,\theta ^{\prime }_h))= & {} -((F\theta _h,\theta ^{\prime }_h)) +\kappa (((1-\gamma w_{*})f^{\prime }(u_{*})\rho _h,\theta ^{\prime }_h)) \\{} & {} +\kappa (((1-\gamma w_{*})(u_h -u_{*})^2R_1,\theta ^{\prime }_h))\\{} & {} -\kappa ((g^{\prime }(v_{*})\theta _h,\theta ^{\prime }_h)) -\kappa (((v_h-v_{*})^2R_2,\theta ^{\prime }_h)) \\{} & {} -\kappa ((\gamma h f^{\prime }(u_{*})(u_h -u_{*}),\theta ^{\prime }_h)) -\kappa ((\gamma h(u_h-u_{*})^2R_1,\theta ^{\prime }_h)). \end{aligned}$$

Then, using Cauchy–Schwarz inequality, we get

$$\begin{aligned} \displaystyle \left\Vert \rho _h^{\prime }\right\Vert ^2\lesssim & {} \displaystyle \dfrac{\textrm{d}}{\textrm{d}t}\left\Vert \rho _h\right\Vert ^2 +\left\Vert \theta _h\right\Vert \left\Vert \rho _h^{\prime }\right\Vert +\left\Vert u_h -u_{*}\right\Vert ^2\left\Vert \rho _h^{\prime }\right\Vert +\left\Vert v_h -v_{*}\right\Vert ^2\left\Vert \rho _h^{\prime }\right\Vert \nonumber \\{} & {} + \left\Vert h\right\Vert \left\Vert u_h -u_{*}\right\Vert \left\Vert \rho _h^{\prime }\right\Vert +\left\Vert h\right\Vert \left\Vert u_h -u_{*}\right\Vert ^2\left\Vert \rho _h^{\prime }\right\Vert \end{aligned}$$
(A.15)

and

$$\begin{aligned} \displaystyle \epsilon \left\Vert \theta _h^{\prime }\right\Vert ^2\lesssim & {} \displaystyle \dfrac{\textrm{d}}{\textrm{d}t}\left\Vert \theta _h\right\Vert ^2 +\left\Vert \rho _h\right\Vert \left\Vert \theta _h^{\prime }\right\Vert +\left\Vert u_h -u_{*}\right\Vert ^2\left\Vert \theta _h^{\prime }\right\Vert +\left\Vert v_h -v_{*}\right\Vert ^2\left\Vert \theta _h^{\prime }\right\Vert \nonumber \\{} & {} + \left\Vert h\right\Vert \left\Vert u_h -u_{*}\right\Vert \left\Vert \theta _h^{\prime }\right\Vert +\left\Vert h\right\Vert \left\Vert u_h -u_{*}\right\Vert ^2\left\Vert \theta _h^{\prime }\right\Vert . \end{aligned}$$
(A.16)

Combining (A.15) and (A.16), and integrating over [0, t], in addition to that, using Assumption (F) and Young’s inequality, we have

$$\begin{aligned}{} & {} \left\Vert \rho _h^{\prime }\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)} +\epsilon \left\Vert \theta _h^{\prime }\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}\lesssim \displaystyle \left\Vert \rho _h(t)\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)} \\{} & {} +\left\Vert \theta _h(t)\right\Vert ^2 +\left\Vert \theta _h\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)} +\left\Vert \rho _h\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)} \\{} & {} +\left\Vert u_h -u_{*}\right\Vert ^2_{L^{\infty }(0,t;\mathbb {R}_+)}\left\Vert u_h -u_{*}\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)} \\{} & {} +\left\Vert v_h -v_{*}\right\Vert ^2_{L^{\infty }(0,t;\mathbb {R}_+)}\left\Vert v_h -v_{*}\right\Vert ^2_{L^{2}(0,t;\mathbb {R}_+)} \\{} & {} +\left\Vert h\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}\left\Vert u_h -u_{*}\right\Vert ^2_{L^{\infty }(0,t;\mathbb {R}_+)} +\left\Vert h\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}\left\Vert u_h -u_{*}\right\Vert ^4_{L^{\infty }(0,t;\mathbb {R}_+)}. \end{aligned}$$

Further, using Equations (A.14), (A.5), (A.6), and (A.7), we infer

$$\begin{aligned} \begin{array}{llll} \displaystyle \left\Vert \rho _h^{\prime }\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)} +\epsilon \left\Vert \theta _h^{\prime }\right\Vert ^2_{L^2(0,t;\mathbb {R}_+)}\lesssim \left\Vert h\right\Vert ^4_{L^2(0,t;\mathbb {R}_+)}, \end{array} \end{aligned}$$

and hence the result. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsayed, H., Fakih, H., Miranville, A. et al. On an Optimal Control Problem Describing Lactate Transport Inhibition. J Optim Theory Appl 198, 1049–1076 (2023). https://doi.org/10.1007/s10957-023-02271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02271-8

Keywords

Mathematics Subject Classification

Navigation