Skip to main content
Log in

Conjugate Duality in Set Optimization via Nonlinear Scalarization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Two approaches are applied to the set-valued optimization problem. The following problems have been examined by Corley, Luc and their colleagues: Take the union of all objective values and then search for (weakly, properly, etc.) minimal points in this union with respect to the vector ordering. This approach is called the vector approach to set optimization. The concept shifted when the set relations were popularized by Kuroiwa–Tanaka–Ha at the end of the twentieth century. They introduced six types of set relations on the power set of topological vector space using a convex ordering cone C with nonempty interior. Therefore, this approach is called the set relation approach to set optimization. For a given vector optimization problem, several approaches are applied to construct a dual problem. A difficulty lies in the fact that the minimal point in vector optimization problem is not necessarily a singleton, though it becomes a subset of the image space in general. In this paper, we first present new definitions of set-valued conjugate map based on comparison of sets (the set relation approach) followed by introducing some types of weak duality theorems. We also show convexity and continuity properties of conjugate relations. Lastly, we present some types of strong duality theorems using nonlinear scalarizing technique for set that is generalizations of Gerstewitz’s scalarizing function for the vector-valued case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araya, Y., Suzuki, K., Saito, Y., Kimura, Y.: New sufficiency for global optimality and duality of nonlinear multi-objective programming problems via underestimators. Linear Nonlinear Anal. 7(2), 301–316 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Araya, Y.: Some types of minimal element theorems and Ekeland’s variational principles in set optimization. Linear Nonlinear Anal. 6(2), 187–204 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Araya, Y.: Existence theorems of cone saddle-points in set optimization applying nonlinear scalarizations. Linear Nonlinear Anal. 6(1), 13–33 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Araya, Y.: New types of nonlinear scalarizations in set optimization. In: Akashi, S., Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Optimization, pp. 7–21. Yokohama Publishers, Yokohama (2014)

  5. Araya, Y.: Four types of nonlinear scalarizations and some applications in set optimization. Nonlinear Anal. 75(9), 3821–3835 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Bao, T.Q., Tammer, C.: Scalarization functionals with uniform level sets in set optimization. J. Optim. Theory Appl. 182(1), 310–335 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Robust optimization: methodology and applications. Math. Program. 92(3), Ser. B, 453–480 (2002)

  8. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Bot, R.I., Grad, S.-M., Wanka, G.: Duality in Vector Optimization. Vector Optimization. Springer, Berlin (2009)

  10. Bouza, G., Quintana, E., Tammer, C.: A steepest descent method for set optimization problems with set-valued mappings of finite cardinality. J. Optim. Theory Appl. 190(3), 711–743 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Caprari, E., Cerboni Baiardi, L., Molho, E.: Scalarization and robustness in uncertain vector optimization problems: a non componentwise approach. J. Global Optim. 84(2), 295–320 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Chen, J., Köbis, E., Köbis, M.A., Yao, J.: A new set order relation in set optimization. J. Nonlinear Convex Anal. 18(4), 637–649 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Corley, H.W.: Existence and Lagrangian duality for maximizations of set-valued functions. J. Optim. Theory Appl. 54(3), 489–501 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 239, 17–31 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Eichfelder, G., Jahn, J.: Vector optimization problems and their solution concepts. In: Ansari, Q.H., Yao, J.C. (eds.) Recent Developments in Vector Optimization, 1–27, Vector Optim., Springer, Berlin (2012)

  16. Georgiev, P.G., Tanaka, T.: Fan’s inequality for set-valued maps. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 1 (Catania, 2000). Nonlinear Anal. 47(1), 607–618 (2001)

  17. Georgiev, P.G., Tanaka, T.: Vector-valued set-valued variants of Ky Fan’s inequality. J. Nonlinear Convex Anal. 1(3), 245–254 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Gerstewitz, C., Iwanow, E.: Dualität für nichtkonvexe Vektoroptimierungsprobleme. (German )[ Duality for nonconvex vector optimization problems ], Workshop on vector optimization (Plaue, 1984) Wiss. Z. Tech. Hochsch. Ilmenau 31(2), 61–81 (1985)

  19. Gerstewitz, C.: Nichtkonvexe Dualität in der Vektoroptimierung. (German )[ Nonconvex duality in vector optimization], Wiss. Z. Tech. Hochsch. Leuna-Merseburg, 25(3), 357–364 (1983)

  20. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67(2), 297–320 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

  22. Gutiérrez, C., Jimenez, B., Miglierina, B.E., Molho, E.: Scalarization in set optimization with solid and nonsolid ordering cones. J. Global Optim. 61(3), 525–552 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75(4), 1822–1833 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Hamel, A., Heyde, F., Löhne, A., Rudloff, B., Schrage, C.: Set optimization: a rather short introduction. In: Hamel, A., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.) Set Optimization and Applications—the State of the Art, 65–141, Springer Proc. Math. Stat., 151, Springer, Heidelberg (2015)

  25. Hamel, A., Löhne, A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear and Convex Anal. 7(1), 19–37 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Han, Y.: Nonlinear scalarizing functions in set optimization problems. Optimization 68(9), 1685–1718 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set-optimization with set-valued maps. J. Math. Anal. Appl. 325(1), 1–18 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Ide, J., Köbis, E., Kuroiwa, D., Schöbel, A., Tammer, C.: The relationship between multi-objective robustness concepts and set-valued optimization. Fixed Point Theory Appl. 2014(83), 20 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Ide, J., Köbis, E.: Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations. Math. Methods Oper. Res. 80(1), 99–127 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Ide, J., Schöbel, A.: Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectrum 38(1), 235–271 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Jahn, J., Ha, T.X.D.: New order relations in set optimization. J. Optim. Theory Appl. 148(2), 209–236 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Karaman, E., Atasever Güvenç, I., Soyertem, M., Tozkan, D., Küçük, M., Küçük, Y.: A vectorization for nonconvex set-valued optimization. Turkish J. Math. 42(4), 1815–1832 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Karaman, E., Soyertem, M., Atasever Güvenç, I., Tozkan, D., Küçük, M., Küçük, Y.: Partial order relations on family of sets and scalarizations for set optimization. Positivity 22(3), 783–802 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Kawasaki, H.: A duality theorem in multiobjective nonlinear programming. Math. Oper. Res. 7(1), 95–110 (1982)

    MathSciNet  MATH  Google Scholar 

  35. Kawasaki, H.: Conjugate relations and weak subdifferentials of relations. Math. Oper. Res. 6(4), 593–607 (1981)

    MathSciNet  MATH  Google Scholar 

  36. Khan, A., Tammer, C., Zălinescu, C.: Set-Valued Optimization. An Introduction with Applications. Vector Optimization. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  37. Köbis, E., Köbis, M.A.: Treatment of set order relations by means of a nonlinear scalarization functional: a full characterization. Optimization 65(10), 1805–1827 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Köbis, E., Köbis, M.A., Yao, J.: Generalized upper set less order relation by means of a nonlinear scalarization functional. J. Nonlinear Convex Anal. 17(4), 725–734 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Köbis, E.: On robust optimization: relations between scalar robust optimization and unconstrained multicriteria optimization. J. Optim. Theory Appl. 167(3), 969–984 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47(2), 1395–1400 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. In: Proceedings of the Second World Congress of Nonlinear Analysts, Part 3 (Athens, 1996). Nonlinear Anal. 30(3), 1487–1496 (1997)

  42. Kuwano, I., Tanaka, T., Yamada, S.: Characterization of nonlinear scalarizing functions for set-valued maps. In: Akashi, S., Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Optimization, 193–204. Yokohama Publishers, Yokohama (2009)

  43. Löhne, A.: Optimization with set relations: conjugate duality. Optimization 54(3), 265–282 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Löhne, A., Tammer, C.: A new approach to duality in vector optimization. Optimization 56(1–2), 221–239 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

  46. Maeda, T.: On optimization problems with set-valued objective maps: existence and optimality. J. Optim. Theory Appl. 153(2), 263–279 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Nishizawa, S., Tanaka, T., Georgiev, P.Gr.: On inherited properties of set-valued maps. In: Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, 341–350. Yokohama Publishers, Yokohama (2003)

  48. Ogata, Y., Saito, Y., Tanaka, T., Yamada, S.: Sublinear scalarization methods for sets with respect to set-relations. Linear Nonlinear Anal. 3(1), 121–132 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–524 (1984)

    MathSciNet  MATH  Google Scholar 

  50. Peressini, A.L.: Ordered Topological Vector Spaces. Harper & Row, Publishers, New York (1967)

    MATH  Google Scholar 

  51. Rubinov, A.M.: Sublinear operators and their applications (Russian). Uspehi Mat. Nauk 32(4(196)), 113–174 (1977)

    MathSciNet  Google Scholar 

  52. Sach, P.H.: New nonlinear scalarization functions and applications. Nonlinear Anal. 75(4), 2281–2292 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Shimizu, A., Nishizawa, S., Tanaka, T.: Optimality conditions in set-valued optimization using nonlinear scalarization methods. In: Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, 565–574. Yokohama Publishers, Yokohama (2007)

  54. Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)

    MATH  Google Scholar 

  55. Tammer, C., Weidner, P.: Scalarization and Separation by Translation Invariant Functions—with Applications in Optimization, Nonlinear Functional Analysis, and Mathematical Economics. Vector Optimization. Springer, Cham (2020)

  56. Tanino, T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167(1), 84–97 (1992)

    MathSciNet  MATH  Google Scholar 

  57. Tanino, T., Sawaragi, Y.: Conjugate maps and duality in multiobjective optimization. J. Optim. Theory Appl. 31(4), 473–499 (1980)

    MathSciNet  MATH  Google Scholar 

  58. Tanino, T., Sawaragi, Y.: Duality theory in multiobjective programming. J. Optim. Theory Appl. 27(4), 509–529 (1979)

    MathSciNet  MATH  Google Scholar 

  59. Yu, H., Ike, K., Ogata, Y., Saito, Y., Tanaka, T.: Computational methods for set-relation-based scalarizing functions. Nihonkai Math. J. 28(2), 139–149 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the referees for his/her many useful comments on this paper. Moreover, I am very grateful to Professor Kon at Hirosaki University for his useful comments on Remark 4.4 (Theorems 4.9 and 4.10). This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousuke Araya.

Additional information

Communicated by Vaithilingam Jeyakumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya, Y. Conjugate Duality in Set Optimization via Nonlinear Scalarization. J Optim Theory Appl 199, 466–498 (2023). https://doi.org/10.1007/s10957-023-02307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02307-z

Keywords

Mathematics Subject Classification

Navigation