Skip to main content
Log in

A Class of Optimal Control Problems of Forward–Backward Systems with Input Constraint

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a new class of optimal control problems with admissibility constraint, where the state is driven by a fully coupled forward backward stochastic differential equation (FBSDE) with mixed initial-terminal condition. Different from the classical control problems, both dynamic process control and static initial-terminal perturbations are considered. Moreover, all control/perturbation components are subject to input constraint in terms of closed convex sets and partial information in terms of some sub-filtration for randomness evolution. We first study the nonlinear case of aforementioned FBSDE optimal control by deriving stochastic maximum principle. Next, we consider the linear quadratic case with explicit representation of the optimal admissible controls. More specifically, a new Hamiltonian system involving three projection operators and conditional expectation is derived. Finally, we apply obtained maximum principle to study a general class of large-population system and provide a unified framework to analyze related mean-field game (MFG). Our result includes considerable existing MFG results as its special cases and provides some new features such as recursive functional or input delay average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, the assumption (H2) directly follows from (6.25) and (6.26) of [46].

References

  1. Antonelli, F.: Backward–forward stochastic differential equations. Ann. Appl. Probab. 3(3), 777–793 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A., Feng, X., Huang, J.: Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Math. Control Relat. Fields 11(1), 23–46 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013)

    MATH  Google Scholar 

  4. Buckdahn, R., Li, J., Peng, S.: Nonlinear stochastic differential games involving a major player and a large number of collectively acting minor agents. SIAM J. Control Optim. 52(1), 451–492 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Caines, P.E., Huang, M., Malhame, R.P.: Mean field games. In: Basar T., Zaccour, G. (Eds.) Handbook of Dynamic Game Theory, vol. 1, pp. 345–372. Springer, Berlin (2017)

  6. Chen, S., Yong, J.: Stochastic linear quadratic optimal control problems. Appl. Math. Optim. 43(1), 21–45 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Cvitanić, J., Wan, X., Zhang, J.: Optimal contracts in continuous-time models. J. Appl. Math. Stoch. Anal. 2006, 1–27 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Delarue, F.: On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stoch. Process. Their Appl. 99(2), 209–286 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Du, K., Huang, J., Wu, Z.: Linear quadratic mean-field-game of backward stochastic differential systems. Math. Control Related Fields 8(3–4), 653–678 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Espinosa, G.E., Touzi, N.: Optimal investment under relative performance concerns. Math. Finance 25(2), 221–257 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Graber, P.J.: Linear quadratic mean field type control and mean field games with common noise, with application to production of an exhaustible resource. Appl. Math. Optim. 74(3), 459–486 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Hu, Y., Huang, J., Li, X.: Linear quadratic mean field game with control input constraint. ESAIM Control Optim. Calc. Var. 24(2), 901–919 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Hu, Y., Huang, J., Nie, T.: Linear-quadratic-Gaussian mixed mean-field games with heterogeneous input constraints. SIAM J. Control Optim. 56(4), 2835–2877 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Hu, Y., Jin, H.Q., Zhou, X.Y.: Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium. SIAM J. Control Optim. 55(2), 1261–1279 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Hu, Y., Zhou, X.Y.: Constrained stochastic LQ control with random coefficients, and application to portfolio selection. SIAM J. Control Optim. 44(2), 444–466 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Huang, J., Li, N.: Linear-quadratic mean-field game for stochastic delayed systems. IEEE Trans. Autom. Control 63(8), 2722–2729 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Huang, M., Caines, P.E., Malhame, R.P.: Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: 42nd IEEE International Conference on Decision and Control, vol. 1, pp. 98–103 (2003)

  18. Huang, M., Caines, P.E., Malham, R.P.: An invariance principle in large population stochastic dynamic games. J. Syst. Sci. Complex. 20(2), 162–172 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Huang, M., Caines, P.E., Malham, R.P.: Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans. Autom. Control 57(7), 1736–1751 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Huang, J., Li, X., Wang, G.: Near-optimal control problems for linear forward–backward stochastic systems. Automatica 46(2), 397–404 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Huang, J., Li, X., Wang, G.: Maximum principles for a class of partial information risk-sensitive optimal controls. IEEE Trans. Autom. Control 55(6), 1438–1443 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Huang, J., Wang, S., Wu, Z.: Backward mean-field linear-quadratic-Gaussian (LQG) games: full and partial information. IEEE Trans. Autom. Control 61(12), 3784–3796 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Huang, J., Shi, J.: Maximum principle for optimal control of fully coupled forward–backward stochastic differential delayed equations. ESAIM Control Optim. Calc. Var. 18(4), 1073–1096 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Huang, P., Wang, G., Zhang, H.: A partial information linear-quadratic optimal control problem of backward stochastic differential equation with its applications. Sci. China Inf. Sci. 63(9), 1–13 (2020)

    MathSciNet  Google Scholar 

  25. Kallianpur, G.: Stochastic Filtering Theory. Springer, New York (1980)

    MATH  Google Scholar 

  26. Kohlmann, M., Zhou, X.Y.: Relationship between backward stochastic differential equations and stochastic controls: a linear-quadratic approach. SIAM J. Control Optim. 38(5), 1392–1407 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Lim, A.E., Zhou, X.Y.: Linear-quadratic control of backward stochastic differential equations. SIAM J. Control Optim. 40(2), 450–474 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Ma, J., Protter, P., Yong, J.: Solving forward–backward stochastic differential equations explicitly—a four step scheme. Probab. Theory Relat. Fields 98(3), 339–359 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Ma, J., Wu, Z., Zhang, D., Zhang, J.: On well-posedness of forward–backward SDEs—a unified approach. Ann. Appl. Probab. 25(4), 2168–2214 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Ma, J., Yong, J.: Forward–Backward Stochastic Differential Equations and their Applications. Springer, New York (2007)

    MATH  Google Scholar 

  32. Pardoux, E., Tang, S.: Forward–backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114(2), 123–150 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Peng, S.: Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27(2), 125–144 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Peng, S., Wu, Z.: Fully coupled forward–backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37(3), 825–843 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Shi, J., Wu, Z.: Maximum principle for partially-observed optimal control of fully-coupled forward–backward stochastic systems. J. Optim. Theory Appl. 145(3), 543–578 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Sun, J., Li, X., Yong, J.: Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems. SIAM J. Control Optim. 54, 2274–2308 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Wang, G., Wang, W., Yan, Z.: Linear quadratic control of backward stochastic differential equation with partial information. Appl. Math. Comput. 403, 126164 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Wang, G., Wu, Z., Xiong, J.: A linear-quadratic optimal control problem of forward–backward stochastic differential equations with partial information. IEEE Trans. Autom. Control 60(11), 2904–2916 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Wang, G., Xiao, H., Xing, G.: An optimal control problem for mean-field forward–backward stochastic differential equation with noisy observation. Automatica 86, 104–109 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Weintraub, G.Y., Benkard, C.L., Roy, B.V.: Markov perfect industry dynamics with many firms. Econometrica 76(6), 1375–1411 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Wu, Z.: A general maximum principle for optimal control of forward–backward stochastic systems. Automatica 49(5), 1473–1480 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Xie, T., Feng, X., Huang, J.: Mixed linear quadratic stochastic differential leader-follower game with input constraint. Appl. Math. Optim. 84(1), 215–251 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Xu, W.: Stochastic maximum principle for optimal control problem of forward and backward system. J. Aust. Math. Soc. 37(2), 172–185 (1995)

    MathSciNet  MATH  Google Scholar 

  44. Yong, J.: Finding adapted solutions of forward–backward stochastic differential equations: method of continuation. Probab. Theory Relat. Fields 107(4), 537–572 (1997)

    MathSciNet  MATH  Google Scholar 

  45. Yong, J.: A leader–follower stochastic linear quadratic differential game. SIAM J. Control Optim. 41(4), 1015–1041 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Yong, J.: Forward–backward stochastic differential equations with mixed initial-terminal conditions. Trans. Am. Math. Soc. 362(2), 1047–1096 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Yong, J.: Optimality variational principle for controlled forward–backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control Optim. 48(6), 4119–4156 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    MATH  Google Scholar 

  49. Zhang, J.: The wellposedness of FBSDEs. Discrete Contin. Dyn. Syst. Ser. B 6(4), 927–940 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqiang Li.

Additional information

Communicated by Mihai Sirbu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author acknowledges support from RGC PolyU P0035957, P0038384, P0037987, P0031044, and NSFC 12171407. The second author acknowledges support from the NSF of P.R. China (No. 12101537, 12271304) and Doctoral Scientific Research Fund of Yantai University (No. SX17B09).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, W. & Zhao, H. A Class of Optimal Control Problems of Forward–Backward Systems with Input Constraint. J Optim Theory Appl 199, 1050–1084 (2023). https://doi.org/10.1007/s10957-023-02314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02314-0

Keywords

Navigation