Skip to main content

Exact SDP Reformulations for Adjustable Robust Quadratic Optimization with Affine Decision Rules

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we deal with exact semidefinite programming (SDP) reformulations for a class of adjustable robust quadratic optimization problems with affine decision rules. By virtue of a special semidefinite representation of the non-negativity of separable non-convex quadratic functions on box uncertain sets, we establish an exact SDP reformulation for this adjustable robust quadratic optimization problem on spectrahedral uncertain sets. Note that the spectrahedral uncertain set contains commonly used uncertain sets, such as ellipsoids, polytopes, and boxes. As special cases, we also establish exact SDP reformulations for this adjustable robust quadratic optimization problems when the uncertain sets are ellipsoids, polytopes, and boxes, respectively. As applications, we establish the corresponding results for fractionally adjustable robust quadratic optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbay, M.A., Kalayci, C.B., Polat, O.: A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization. Knowl. Based Syst. 198, 105944 (2020)

  2. Al-Sultan, K.S., Murty, K.G.: Exterior point algorithms for nearest points and convex quadratic programs. Math. Program. 57, 145–161 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. 25, 1–13 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust optimization-methodology and applications. Math. Program. 92, 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99, 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  7. Bertsimas, D., de Ruiter, F.J.: Duality in two-stage adaptive linear optimization: faster computation and stronger bounds. Inf. J. Comput. 28, 500–511 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Zhang, Y.: Uncertain linear programs: extended affinely adjustable robust counterparts. Oper. Res. 57, 1469–1482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J.W., Köbis, E., Yao, J.C.: Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints. J. Optim. Theory Appl. 181, 411–436 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J.W., Li, J., Li, X.B., Lv, Y.B., Yao, J.C.: Radius of robust feasibility of system of convex inequalities with uncertain data. J. Optim. Theory Appl. 184, 384–399 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chuong, T.D., Jeyakumar, V.: Generalized Farkas lemma with adjustable variables and two-stage robust linear programs. J. Optim. Theory Appl. 187, 488–519 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chuong, T.D., Jeyakumar, V., Li, G., Woolnough, D.: Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity. J. Global Optim. 81, 1095–1117 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chuong, T.D., Mak-Hau, V.H., Yearwood, J., Dazeley, R., Nguyen, M.T., Cao, T.: Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty. Ann. Oper. Res. 319, 1533–1564 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chuong, T.D., Jeyakumar, V., Li, G., Woolnough, D.: Exact dual semi-definite programs for affinely adjustable robust SOS-convex polynomial optimization problems. Optimization 71, 3539–3569 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, S., Tsao, H.S.J.: An unconstrained convex programming approach to solving convex quadratic programming problems. Optimization 27, 235–243 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex quadratic programming. Math. Program. Comput. 4, 71–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235, 471–483 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)

  19. Jeyakumar, V., Li, G.: Exact second-order cone programming relaxations for some nonconvex minimax quadratic optimization problems. SIAM J. Optim. 28, 760–787 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiao, L., Lee, J.H.: Fractional optimization problems with support functions: exact SDP relaxations. Linear Nonlinear Anal. 5, 255–268 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Köbis, E.: On robust optimization: relations between scalar robust optimization and unconstrained multicriteria optimization. J. Optim. Theory Appl. 167, 969–984 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, J.H., Jiao, L.: Solving fractional multicriteria optimization problems with sum of squares convex polynomial data. J. Optim. Theory Appl. 176, 428–455 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, P., Fattahi, S., Gómez, A., Küçükyavuz, S.: A graph-based decomposition method for convex quadratic optimization with indicators. Math. Program. 200, 669–701 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mittal, A., Gokalp, C., Hanasusanto, G.A.: Robust quadratic programming with mixed-integer uncertainty. Inf. J. Comput. 32, 201–218 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Ramana, M., Goldman, A.J.: Some geometric results in semidefinite programming. J. Global Optim. 7, 33–50 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Robust convex quadratically constrained programs: Goldfarb, D., Iyengar. G. Math. Program. 97, 495–515 (2003)

  27. Sun, X.K., Teo, K.L., Zeng, J., Guo, X.L.: On approximate solutions and saddle point theorems for robust convex optimization. Optim. Lett. 14, 1711–1730 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, X.K., Teo, K.L., Long, X.J.: Some characterizations of approximate solutions for robust semiinfinite optimization problems. J. Optim. Theory Appl. 191, 281–310 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, X.K., Tan, W., Teo, K.L.: Characterizing a class of robust vector polynomial optimization via sum of squares conditions. J. Optim. Theory Appl. 197, 737–764 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vinzant, C.: What is a spectrahedron? Notices Am. Math. Soc. 61, 492–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wei, H.Z., Chen, C.R., Li, S.J.: Characterizations for optimality conditions of general robust optimization problems. J. Optim. Theory Appl. 177, 835–856 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Woolnough, D., Jeyakumar, V., Li, G.: Exact conic programming reformulations of two-stage adjustable robust linear programs with new quadratic decision rules. Optim. Lett. 15, 25–44 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xia, Y.S., Feng, G.: An improved neural network for convex quadratic optimization with application to real-time beamforming. Neurocomputing 64, 359–374 (2005)

    Article  MATH  Google Scholar 

  34. Yang, Y.: A polynomial arc-search interior-point algorithm for convex quadratic programming. Eur. J. Oper. Res. 215, 25–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yanikoglu, I., Gorissen, B.L., den Hertog, D.: A survey of adjustable robust optimization. Eur. J. Oper. Res. 277, 799–813 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, S., Huang, Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim. 16, 871–890 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, H., Sun, X.K., Li, G.H.: On second-order conic programming duals for robust convex quadratic optimization problems. J. Ind. Manag. Optim. 19, 8114–8128 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZDK202100803), the Team Building Project for Graduate Tutors in Chongqing (yds223010) and the Innovation Project of CTBU (yjscxx2023-211-72).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangkai Sun.

Additional information

Communicated by Jen-Chih Yao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Sun, X. & Teo, K.L. Exact SDP Reformulations for Adjustable Robust Quadratic Optimization with Affine Decision Rules. J Optim Theory Appl 203, 2206–2232 (2024). https://doi.org/10.1007/s10957-023-02371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02371-5

Keywords

Mathematics Subject Classification