Skip to main content

Advertisement

Log in

A New Bayesian Approach to Global Optimization on Parametrized Surfaces in \(\mathbb {R}^{3}\)

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work introduces a new Riemannian optimization method for registering open parameterized surfaces with a constrained global optimization approach. The proposed formulation leads to a rigorous theoretic foundation and guarantees the existence and the uniqueness of a global solution. We also propose a new Bayesian clustering approach where local distributions of surfaces are modeled with spherical Gaussian processes. The maximization of the posterior density is performed with Hamiltonian dynamics which provide a natural and computationally efficient spherical Hamiltonian Monte Carlo sampling. Experimental results demonstrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Datasets and matlab code generated and/or analyzed during the current study are available from the corresponding author on reasonable request

References

  1. Adouani, I., Samir, C.: A constructive approximation of interpolating Bézier curves on Riemannian symmetric spaces. J. Opt. Theory Appl. 187, 158–180 (2020)

    Article  Google Scholar 

  2. Bernal, J., Dogan, G., Hagwood, C.R.: Fast dynamic programming for elastic registration of curves. In: Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1066–1073. IEEE, Las Vegas, NV, USA (2016)

  3. Beyhaghi, P., Alimo, R., Bewley, T.: A derivative-free optimization algorithm for the efficient minimization of functions obtained via statistical averaging. Comput. Opt. Appl. 71, 1–31 (2020)

    Article  MathSciNet  Google Scholar 

  4. Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. Comput.-Aid. Des. 38, 1002–1019 (2006)

    Article  Google Scholar 

  5. Botev, Z., Grotowski, J., Kroese, D.: Kernel density estimation via diffusion. Annals Stat. 38, 2916–2957 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bouix, S., Pruessner, J.C., Collins, D.L., Siddiqi, K.: Hippocampal shape analysis using medial surfaces. Neuroimage 25, 1077–1089 (2005)

    Article  Google Scholar 

  7. Bruni, C., Bruni, R., De Santis, A., Iacoviello, D., Koch, G.: Global optimal image reconstruction from blurred noisy data by a Bayesian approach. J. Opt. Theory Appl. 115, 67–96 (2002)

    Article  MathSciNet  Google Scholar 

  8. Cencov, N.: Evaluation of an unknown distribution density from observations. Doklady 3, 1559–1562 (1962)

    Google Scholar 

  9. Collignon, A.M.F., Vandermeulen, D., Suetens, P., Marchal, G.: Surface-based registration of 3D medical images. In: Medical Imaging 1993: Image Processing, pp. 32 – 42. International Society for Optics and Photonics, SPIE (1993)

  10. Croquet, B., Christiaens, D., Weinberg, S.M., Bronstein, M., Vandermeulen, D., Claes, P.: Unsupervised diffeomorphic surface registration and non-linear modelling. In: Medical Image Computing and Computer Assisted Intervention–MICCAI, pp. 118–128. Springer International Publishing, Strasbourg, France (2021)

  11. Davies, R.H., Twining, C.J., Cootes, T.F., Taylor, C.J.: Building 3-D statistical shape models by direct optimization. IEEE Trans. Med. Imaging 29, 961–981 (2010)

    Article  Google Scholar 

  12. De Lara, L., González-Sanz, A., Loubes, J.M.: Diffeomorphic registration using Sinkhorn divergences. SIAM J. Imag. Sci. 16, 250–279 (2023)

    Article  MathSciNet  Google Scholar 

  13. Dogan, G., Bernal, J., Hagwood, C.R.: A fast algorithm for elastic shape distances between closed planar curves. In: Conference on Computer Vision and Pattern Recognition CVPR, pp. 4222–4230. IEEE Computer Society, Boston, MA, USA (2015)

  14. Feydy, J., Charlier, B., Vialard, F.X., Peyré, G.: Optimal transport for diffeomorphic registration. In: Medical Image Computing and Computer Assisted Intervention–MICCAI, pp. 291–299. Springer International Publishing, Quebec City, QC, Canada (2017)

  15. Fradi, A., Samir, C., Braga, J., Joshi, S.H., Loubes, J.M.: Nonparametric Bayesian regression and classification on manifolds, with applications to 3D cochlear shapes. IEEE Trans. Image Process. 31, 2598–2607 (2022)

    Article  Google Scholar 

  16. Garnett, R.: Bayesian Optimization. Cambridge University Press, Cambridge (2023)

    Book  Google Scholar 

  17. Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. J. Royal Stat. Soc. 41, 337–348 (1992)

    Google Scholar 

  18. Gomez, J.: Stochastic global optimization algorithms: a systematic formal approach. Inf. Sci. 472, 53–76 (2019)

    Article  MathSciNet  Google Scholar 

  19. Gorczowski, K., Styner, M., Jeong, J.Y., Marron, J., Piven, J., Hazlett, H.C., Pizer, S.M., Gerig, G.: Multi-object analysis of volume, pose, and shape using statistical discrimination. Trans. Pattern Anal. Mach. Int. 32, 652–661 (2009)

    Article  Google Scholar 

  20. Han, A., Mishra, B., Jawanpuria, P., Gao, J.: Riemannian accelerated gradient methods via extrapolation. In: Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, pp. 1554–1585. PMLR (2023)

  21. Hernández-Lobato, J.M., Gelbart, M., Adams, R., Hoffman, M., Ghahramani, Z.: A general framework for constrained Bayesian optimization using information-based search. J. Mach. Learn. Res. 17, 1–53 (2016)

    MathSciNet  Google Scholar 

  22. Holbrook, A., Lan, S., Streets, J., Shahbaba, B.(2020) Nonparametric Fisher geometry with application to density estimation. In: Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), Proceedings of Machine Learning Research, 124, 101–110

  23. Huang, Q.X., Adams, B., Wicke, M., Guibas, L.: Nonrigid registration under isometric deformations. Eurograph. Symp. Geomet. Process. 8, 1449–1457 (2008)

    Google Scholar 

  24. Huang, W., Wei, K.: Riemannian proximal gradient methods. Math. Program. 194, 371–413 (2022)

    Article  MathSciNet  Google Scholar 

  25. Huber, D., Kapuria, A., Donamukkala, R., Hebert, M.: Parts-based 3D object classification. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 82–89. IEEE Computer Society, Washington, D.C., USA (2004)

  26. Jermyn, I.H., S., K., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. In: ECCV, Lecture Notes in Computer Science, pp. 804–817. Springer, Heidelberg (2012)

  27. Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graph. 26, 1–8 (2007)

    Article  Google Scholar 

  28. Kurtek, S., Klassen, E., Ding, Z., Avison, M.J., Srivastava, A.: Parameterization-invariant shape statistics and probabilistic classification of anatomical surfaces. In: Proceedings of the 22nd International Conference on Information Processing in Medical Imaging, pp. 147–158. Springer-Verlag, Berlin, Heidelberg (2011)

  29. Lan, S., Zhou, B., Shahbaba, B.: Spherical Hamiltonian Monte Carlo for constrained target distributions. In: Proceedings of the 31st International Conference on Machine Learning, pp. 629–637. PMLR, Bejing, China (2014)

  30. Lei, N., Gu, X.: FFT-OT: A fast algorithm for optimal transportation. In: International Conference on Computer Vision (ICCV), pp. 6260–6269. IEEE, Montreal, QC, Canada (2021)

  31. Micheli, M., Michor, P.W., Mumford, D.: Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izvestiya: Math. 77, 541–570 (2013)

    Article  MathSciNet  Google Scholar 

  32. Niroomand, M.P., Dicks, L., Pyzer-Knapp, E.O., Wales, D.J.: Physics inspired approaches to understanding Gaussian processes. CoRR abs/2305.10748 (2023)

  33. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 1555–1564 (2010)

    Article  Google Scholar 

  34. Pauly, M., Mitra, N.J., Giesen, J., Gross, M., Guibas, L.J.: Example-based 3D scan completion. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, SGP 05, Eurographics Association, Vienna, Austria (2005)

  35. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imag. Vis. 25, 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  36. Per, B.: Reliable updates of the transformation in the iterative closest point algorithm. Comput. Opt. Appl. 63, 543–557 (2016)

    Article  MathSciNet  Google Scholar 

  37. Per, B., Ove, E.: Robust registration of point sets using iteratively reweighted least squares. Comput. Opt. Appl. 58, 543–561 (2014)

    Article  MathSciNet  Google Scholar 

  38. Raposo, C., Barreto, J.P.: 3D registration of curves and surfaces using local differential information. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9300–9308. IEEE, Salt Lake City (2018)

  39. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Opt. Theory Appl. 171, 186–208 (2016)

    Article  MathSciNet  Google Scholar 

  40. Srivastava, A., Klassen, E.: Functional and shape data analysis. Springer, New York (2016)

    Book  Google Scholar 

  41. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in Euclidean spaces. Trans. Pattern Anal. Mach. Int. 33, 1415–1428 (2011)

    Article  Google Scholar 

  42. Žilinskas, A., Calvin, J.: Bi-objective decision making in global optimization based on statistical models. J. Global Opt. 74, 599–609 (2019)

    Article  MathSciNet  Google Scholar 

  43. Wang, Y., Gupt, M., Zhang, S., Wang, S., Gu, X., Samaras, D., Huang, P.: High resolution tracking of non-rigid motion of densely sampled 3D data using harmonic maps. Int. J. Comput. Vis. 76, 283–300 (2008)

    Article  Google Scholar 

  44. Yang, X., Deng, C., Zheng, F., Yan, J., Liu, W.: Deep spectral clustering using dual autoencoder network. arXiv preprint arXiv:1904.13113 (2019)

  45. Zheng, X., Wen, C., Lei, N., Ma, M., Gu, X.: Surface registration via foliation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 938–947. IEEE, Venice, Italy (2017)

  46. Zhigljavsky, A., Žilinskas, A.: Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems. Opt. Lett. 13, 249–259 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chafik Samir.

Additional information

Communicated by Panos M. Pardalos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

More results

See Figs. 8 and  9

Fig. 9
figure 9

The Markov chain values obtained by HMC a, the normalized histogram b, and the nonparametric density estimation c of \(a^1_{1,1}\) (top) and \(b^1_{1,1}\) (bottom)

Proofs

Proof of Theorem 3.1

Let \(\gamma \in \varGamma \) be defined as follows

$$\begin{aligned} \gamma : [0,1]^{2}\rightarrow & {} [0,1]^{2}\\ \xi\rightarrow & {} \left( \gamma _{1}(\xi ), \gamma _{2}(\xi ) \right) , \end{aligned}$$

where \(\gamma _{1}(\xi )=\xi _{1}\) and \(\gamma _{2}(\lambda , \xi _{2})=\alpha ^{\lambda }(\xi _{2})\) for \(\lambda \in [0,1]\). Hence, the determinant of the Jacobi of \(\gamma \) is

$$\begin{aligned} \det \left( \begin{bmatrix} \frac{d\gamma _{1}}{d\xi _{1}} &{} \frac{d\gamma _{1}}{d\xi _{2}} \\ \frac{d\gamma _{2}}{d\xi _{1}} &{} \frac{d\gamma _{2}}{d\xi _{2}} \end{bmatrix} \right)= & {} \det \left( \begin{bmatrix} 1 &{} 0 \\ \frac{d\gamma _{2}}{d\xi _{2}} &{} \frac{d\gamma _{2}}{d\xi _{2}} \end{bmatrix} \right) \\ {}= & {} \frac{d \gamma _{2}}{d \xi _{2}}. \end{aligned}$$

Now let \(q^{\lambda }(\xi _{2})\) and \(p^{\lambda }(\xi _{2})\) denote \(Q_{1}(\lambda , \xi _{2})\) and \(Q_{2}(\lambda , \xi _{2})\) respectively. We have

$$\begin{aligned} h^{\lambda }(\alpha ^{\lambda })= & {} \int _{0}^{1} \Vert Q_{1}(\lambda , \xi _{2}) - (Q_{2},\gamma )(\lambda ,\xi _{2})\Vert ^{2}_{2} d\xi _{2}, \\= & {} \int _{0}^{1} \Vert Q_{1}(\lambda , \xi _{2}) - \sqrt{|J_{\gamma }|}(Q_{2} \circ \gamma )(\lambda , \xi _{2}) \Vert _{2}^{2} d\xi _{2}, \\= & {} \int _{0}^{1} \Vert q^{\lambda }(\xi _{2}) - \sqrt{\dot{\alpha }^{\lambda }} p^{\lambda } \circ \alpha ^{\lambda }(\xi _{2}) \Vert _{2}^{2} d\xi _{2}, \end{aligned}$$

which completes the proof for \(h^{\lambda }\). Likewise we obtain a proof for \(k^{\lambda }\). \(\square \)

Proof of Theorem 3.2

Substituting \(\gamma \) with its truncated version \(\gamma _{m}\) obtained from the K–L expansion of \(\psi _j\), we can rewrite (4) as

$$\begin{aligned} h^{\lambda }(\alpha ^{\lambda }_{2,m})= & {} {\small \int _{0}^{1} } || Q_1(\lambda ,\xi _2)-\sqrt{\int _{0}^{\lambda } {\psi _{2,m}(t_1,\xi _2)}^2 dt_1} Q_2 \circ \gamma _m(\lambda ,\xi _2) ||_2^2 d \xi _2, \nonumber \\= & {} \int _{0}^{1} || q^{\lambda }(\xi _2)-\sqrt{ \dot{\alpha }^{\lambda }_{2,m} (\xi _2) } p^{\lambda } \circ \alpha ^{\lambda }_{2,m}(\xi _2) ||_2^2 d \xi _2. \end{aligned}$$
(A1)

If \(B \in \mathcal {S}^{m^2-1}\) then \(\alpha ^{\lambda }_{2,m}\) is a 1D reparametrization which gives the optimal minimizer \(\hat{B}\), see [15] for further details about solution of optimization problem (A1). Similar considerations apply to (5) to obtain the optimal minimizer \(\hat{A}\).

Proof of Theorem 4.1

From (9), the complete log-likelihood term is

$$\begin{aligned}{} & {} \log p (\textbf{D}|A^1,\dots ,A^K,B^1,\dots ,B^K,\pi _1,\dots ,\pi _K,\tilde{Q}^{1,m}(\varvec{\xi }),\dots , \tilde{Q}^{K,m}(\varvec{\xi }), \sigma ^2 ) \nonumber \\{} & {} \propto \sum _{i=1}^{N} \log \Big ( \sum _{k=1}^K \pi _k \exp \big (- \frac{1}{2 \sigma ^2} ||Q^{*,m}_i(\varvec{\xi }) - \tilde{Q}^{k,m}(\varvec{\xi })||_2^2 \big ) \Big ). \end{aligned}$$
(A2)

From (10), we can write the constrained log-prior as

$$\begin{aligned} \log p(A^1,\dots ,A^K,B^1,\dots ,B^K) \propto - \frac{1}{2} \sum _{k=1}^{K} \sum _{l_1,l_2=1}^{m} \frac{(a_{l_1,l_2}^{k})^2+(b_{l_1,l_2}^{k})^2}{\lambda _{l_1,l_2}}, \end{aligned}$$
(A3)

under the constraint that \(A^1,\dots , A^K, B^1,\dots , B^K\) belong to \(\mathcal {S}^{m^2-1}\). The desired result in (11) yields by plugging (A2) and (A3) into the log-posterior probability term. \(\square \)

Optimal Reparametrization Between Two Distinct Curves

Let I be a certain univariate interval of parametrization and let \({{\,\mathrm{\mathbb {L}^2}\,}}(I, \mathbb {R}^{n})\) be the set of square integrable functions from I to \(\mathbb {R}^{n}\). Let \(\beta : I \rightarrow \mathbb {R}^{n}\) denote a parametrized curve in \({{\,\mathrm{\mathbb {L}^2}\,}}(\mathcal {D}, \mathbb {R}^{n})\), where \(\mathcal {D}\) is \(I=[0,1]\) for open curves. We are going to restrict to those \(\beta \) satisfying: (i) \(\beta \) is absolutely continuous, (ii) \(\dot{\beta } \in {{\,\mathrm{\mathbb {L}^2}\,}}(\mathcal {D}, \mathbb {R}^{n})\). Note that absolute continuity is equivalent to \(\dot{\beta }\) exists for almost \(t \in \mathcal {D}\), that \(\dot{\beta }\) is summable and that \(\beta (t) =\int _{0}^{t} \dot{\beta }(s) ds\). In [41], Srivastava et al. proposed the Square Root Velocity Function (SRVF) for comparing absolutely continuous curves in \( \mathbb {R}^{n}\). The SRVF representation \(q: \rightarrow \mathbb {R}^{n}\) of \(\beta \) is defined as follows

$$\begin{aligned} q(t) = {\left\{ \begin{array}{ll} \frac{\dot{\beta }(t)}{\sqrt{||\dot{\beta }(t)||_2}}, &{} \quad \text {if} \quad ||\dot{\beta }(t)||_2 \ne 0. \\ 0, &{}\quad \text {otherwise}. \\ \end{array}\right. } \end{aligned}$$

where \(||. ||_{2}\) denotes the 2-norm in \(\mathbb {R}^{n}\). Conversely, given \(q \in {{\,\mathrm{\mathbb {L}^2}\,}}(I, \mathbb {R}^n)\), the original curve \(\beta \) can be recovered using \(\beta (t) = \beta _{0} + \int _{0}^{t} q(s)||q(s)||_2 ds\), where \(\beta _{0}\in \mathbb {R}^{n}\) is the starting point of \(\beta \). Let \(\bar{M}_I\) denote the set of all SRVFs. It is easily seen that in this case of open curves \(\bar{M}_I= {{\,\mathrm{\mathbb {L}^2}\,}}(I,\mathbb {R}^n) \). The reparameterization group for open curves in \(\mathbb {R}^n \) is

$$\begin{aligned} \varGamma _{I}= \lbrace \gamma :I \rightarrow I | \gamma \; \text {is absolutely continuous}, \gamma (0)=0, \\ \gamma (1)=1,\; \text {and} \quad \dot{\gamma }(t)>0 \; \text {almost everywhere} \rbrace , \end{aligned}$$

and its action on the curve \((\beta , \gamma )= \beta \circ \gamma \) is equivalent to the action \((q,\gamma )= \sqrt{\dot{\gamma }}q \circ \gamma \). The shape space for open curves, given by the quotient: \(\mathcal {M}_{I}= \lbrace [q]| q \in \bar{M}_I \rbrace \), where \([q]= \lbrace (q,\gamma )| \gamma \in \varGamma _{I} \rbrace \), is an orbit. It has been shown in [41], that the group action on q is isometric with respect to the \({{\,\mathrm{\mathbb {L}^2}\,}}\) metric. The isometry property is that if any two curves are reparameterized by the same function \(\gamma \), then the resulting distance between them under the elastic metric does not change. Hence, \(\mathcal {M}_{I}\) equipped with the \({{\,\mathrm{\mathbb {L}^2}\,}}\) metric is a well defined metric space. Thus, the cost function to find the optimal reparametrization between two distinct curves is,

$$\begin{aligned} C: \varGamma _{I} \rightarrow \mathbb {R}_+: \gamma\mapsto & {} || q_{1} - (q_{2},\gamma )||_{{{\,\mathrm{\mathbb {L}^2}\,}}}^2 = \int _{I} || q_{1} - \sqrt{\dot{\gamma (t)}}q_{2}\circ \gamma (t)||_{2}^{2} dt. \nonumber \\ \end{aligned}$$
(A4)

The Hilbert Sphere

We list some analytical expressions that are useful for analyzing elements of the Hilbert sphere \(\mathcal {H}\).

  • Geodesic path. Given \(\psi \in \mathcal {H}\) and a vector \(g \in T_{\psi }(\mathcal {H})\), the geodesic path with initial condition \(\psi \) and velocity g at any time instant t can be parameterized as

    $$\begin{aligned} \psi (t)=\cos \big (t|| g||_{{{\,\mathrm{\mathbb {L}^2}\,}}} \big ) \psi + \sin \big (t|| g||_{{{\,\mathrm{\mathbb {L}^2}\,}}}\big ) \frac{g}{|| g||_{{{\,\mathrm{\mathbb {L}^2}\,}}}}. \end{aligned}$$
  • Geodesic distance. The arc length of the geodesic path in \(\mathcal {H}\) between two functions \(\psi _1\) and \(\psi _2\), called geodesic distance, is given by

    $$\begin{aligned} \text {dist}\big (\psi _1,\psi _2\big )_{\mathcal {H}}=\arccos \big (\big <\psi _1,\psi _2\big >_{{{\,\mathrm{\mathbb {L}^2}\,}}}\big ). \end{aligned}$$
  • Exponential map. Let \(\psi \) be any element of \(\mathcal {H}\) and \(g \in T_{\psi }(\mathcal {H})\). We define the exponential map as an isometry from \(T_{\psi }(\mathcal {H})\) to \(\mathcal {H}\), satisfying

    $$\begin{aligned} \exp _{\psi }(g)=\cos \big (|| g||_{{{\,\mathrm{\mathbb {L}^2}\,}}}\big ) \psi + \sin \big (|| g||_{{{\,\mathrm{\mathbb {L}^2}\,}}}\big ) \frac{g}{|| g||}_{{{\,\mathrm{\mathbb {L}^2}\,}}}. \end{aligned}$$

    The exponential map is a bijection between the tangent space and the unit sphere if we restrict \(|| g||_{{{\,\mathrm{\mathbb {L}^2}\,}}}\) so that \(|| g||_{{{\,\mathrm{\mathbb {L}^2}\,}}} \in [0, \pi )\).

  • Log map. For \(\psi _1,\psi _2 \in \mathcal {H}\), we define \(\zeta \in T_{\psi _1}(\mathcal {H})\) to be the inverse exponential (log) map of \(\psi _2\) if \(\exp _{\psi _1}(\zeta )=\psi _2\). We use the notation \(\zeta =\log _{\psi _1}(\psi _2)\) where

    $$\begin{aligned} \zeta =\frac{\alpha }{||\alpha ||}_{{{\,\mathrm{\mathbb {L}^2}\,}}} \text {dist}\big (\psi _1,\psi _2\big )_{\mathcal {H}} \; \text {and} \; \alpha =\psi _2-\psi _1\big <\psi _2,\psi _1\big >_{{{\,\mathrm{\mathbb {L}^2}\,}}} \psi _1. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fradi, A., Samir, C. & Adouani, I. A New Bayesian Approach to Global Optimization on Parametrized Surfaces in \(\mathbb {R}^{3}\). J Optim Theory Appl 202, 1077–1100 (2024). https://doi.org/10.1007/s10957-024-02473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-024-02473-8

Keywords

Mathematics Subject Classification