Skip to main content

Advertisement

Log in

Approximation Methods for a Class of Non-Lipschitz Mathematical Programs with Equilibrium Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider how to solve a class of non-Lipschitz mathematical programs with equilibrium constraints (MPEC) where the objective function involves a non-Lipschitz sparsity-inducing function and other functions are smooth. Solving the non-Lipschitz MPEC is highly challenging since the standard constraint qualifications fail due to the existence of equilibrium constraints and the subdifferential of the objective function is unbounded due to the existence of the non-Lipschitz function. On the one hand, for tackling the non-Lipschitzness of the objective function, we introduce a novel class of locally Lipschitz approximation functions that consolidate and unify a diverse range of existing smoothing techniques for the non-Lipschitz function. On the other hand, we use the Kanzow and Schwartz regularization scheme to approximate the equilibrium constraints since this regularization can preserve certain perpendicular structure as in equilibrium constraints, which can induce better convergence results. Then an approximation method is proposed for solving the non-Lipschitz MPEC and its convergence is established under weak conditions. In contrast with existing results, the proposed method can converge to a better stationary point under weaker qualification conditions. Finally, a computational study on the sparse solutions of linear complementarity problems is presented. The numerical results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andreani, R., Haeser, G., María, L.S., Silva, P.J.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Prog. 135(1–2), 255–273 (2012)

    Article  MathSciNet  Google Scholar 

  2. Andreani, R., Haeser, G., Secchin, L.D., Silva, P.J.: New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM J. Optim. 29(4), 3201–3230 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bian, W., Chen, X.: Worst-case complexity of smoothing quadratic regularization methods for non-Lipschitzian optimization. SIAM J. Optim. 23(3), 1718–1741 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bouza, G., Still, G.: Mathematical programs with complementarity constraints: Convergence properties of a smoothing method. Math. Oper. Res. 32(2), 467–483 (2007)

    Article  MathSciNet  Google Scholar 

  5. Chen, X., Fukushima, M.: A smoothing method for a mathematical program with \(p\)-matrix linear complementarity constraints. Comput. Opt. Appl. 27(3), 223–246 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Xiang, S.: Sparse solutions of linear complementarity problems. Math. Prog. 159(1–2), 539–556 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Zhou, W.: Convergence of the reweighted \(l_1\) minimization algorithm for \(l_2-l_p\) minimization. Comput. Opt. Appl. 59(3), 47–61 (2014)

    Article  Google Scholar 

  8. Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Opt. 17(1), 259–286 (2006)

    Article  MathSciNet  Google Scholar 

  9. Guo, L., Chen, X.: Mathematical programs with complementarity constraints and a non-Lipschitz objective: optimality and approximation. Math. Prog. 185, 455–485 (2021)

    Article  MathSciNet  Google Scholar 

  10. Guo, L., Deng, Z.: A new augmented Lagrangian method for MPCCs-Theoretical and numerical comparison with existing augmented Lagrangian methods. Math. Oper. Res. 47(2), 1229–1246 (2022)

    Article  MathSciNet  Google Scholar 

  11. Guo, L., Lin, G., Ye, J.J.: Stability analysis for parametric mathematical programs with geometric constraints and its applications. SIAM J. Opt. 22(3), 1151–1176 (2012)

    Article  MathSciNet  Google Scholar 

  12. Guo, L., Lin, G.H.: Notes on some constraint qualifications for mathematical programs with equilibrium constraints. J. Opt. Theory Appl. 156(3), 600–616 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hintermöller, M., Wu, T.: Nonconvex TV\(^q\)-models in image restoration: analysis and a trust-region regularization-based superlinearly convergent solver. SIAM J. Imag. Sci. 6(3), 1385–1415 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Prog. 137(1–2), 257–288 (2013)

    Article  MathSciNet  Google Scholar 

  15. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Opt. 22(4), 1579–1606 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kadrani, A., Dussault, J.P., Benchakroun, A.: A new regularization scheme for mathematical programs with complementarity constraints. SIAM J. Opt. 20(1), 78–103 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kanzow, C., Schwartz, A.: Mathematical programs with equilibrium constraints: Enhanced Fritz John-conditions, new constraint qualifications, and improved exact penalty results. SIAM J. Opt. 20(5), 2730–2753 (2010)

    Article  MathSciNet  Google Scholar 

  18. Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties. SIAM J. Opt. 23(2), 770–798 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kanzow, C., Schwartz, A.: The price of inexactness: Convergence properties of relaxation methods for mathematical programs with complementarity constraints revisited. Math. Oper. Res. 40(2), 253–275 (2015)

    Article  MathSciNet  Google Scholar 

  20. Lai, M.J., Wang, J.: An unconstrained \(l_q\) minimization with \(0<l_q<1\) for sparse solution of underdetermined linear systems. SIAM J. Opt. 21(1), 82–101 (2011)

    Article  Google Scholar 

  21. Lin, G.H., Fukushima, M.: New relaxation method for mathematical programs with complementarity constraints. J. Opt. Theory Appl. 118, 81–116 (2003)

    Article  MathSciNet  Google Scholar 

  22. Liu, G., Ye, J.: Merit-function piecewise SQP algorithm for mathematical programs with equilibrium constraints. J. Opt. Theory Appl. 135(3), 623–641 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lu, Z.: Iterative reweighted minimization methods for \(l_p\) regularized unconstrained nonlinear programming. Math. Prog. 147(1–2), 277–307 (2014)

    Article  Google Scholar 

  24. Luo, H., Sun, X., Xu, Y.: Convergence properties of modified and partially-augmented Lagrangian methods for mathematical programs with complementarity constraints. J. Opt. Theory Appl. 145(3), 489–506 (2010)

    Article  MathSciNet  Google Scholar 

  25. Outrata, J.V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24(3), 627–644 (1999)

    Article  MathSciNet  Google Scholar 

  26. Ramos, A.: Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences. Opt. Methods Softw. 36(1), 45–81 (2021)

    Article  MathSciNet  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (2010)

    Google Scholar 

  28. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)

    Article  MathSciNet  Google Scholar 

  29. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Opt. 11(4), 918–936 (2001)

    Article  MathSciNet  Google Scholar 

  30. Ye, J.J.: Constraint qualifications and KKT conditions for bilevel programming problems. Math. Oper. Res. 31(4), 811–824 (2006)

    Article  MathSciNet  Google Scholar 

  31. Ye, J.J., Zhu, D., Zhu, Q.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Opt. 7(2), 481–507 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two referees for their helpful comments and constructive suggestions. In particular, we thank one of the referees for suggesting the use of weaker qualifications than MPEC-RCPLDQC when studying the convergence. The first author was supported by the National Natural Science Foundation of China (Grants 72131007, 72140006, 12271161) and the Natural Science Foundation of Shanghai (Grant 22ZR1415900). This second author was supported by the Project of National Center for Applied Mathematics (Grant ncamc2021-msxm01) and the National Natural Science Foundation of China (Grant 11901068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Guo.

Additional information

Communicated by Sofia Giuffre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Convergence When Using the Regularization by Kadrani et al.

Appendix: The Convergence When Using the Regularization by Kadrani et al.

When using the regularization scheme by Kadrani et al., our approximation problem becomes

$$\begin{aligned} ({\textrm{P}}_{\sigma ,\textrm{t}}^{{\textrm{KDB}}})~~~ \min _x{} & {} F_{\sigma }(x):=f(x) + \lambda \sum _{i=1}^{r}\varphi (D_i^{\top }x;\sigma _i) \\[4pt] \mathrm{s.t.}{} & {} g(x)\le 0,~ h(x)=0,\\[4pt]{} & {} G_i(x)+t\ge 0, ~H_i(x)+t\ge 0,\\[4pt]{} & {} \Phi _i^{KDB}(x;t)\le 0\ \ i\in \{1,\ldots ,m\}, \end{aligned}$$

where \(\Phi _i^{KDB}(x;t):=(H_i(x)-t)(G_i(x)-t)\) for all \(i\in \{1,\ldots ,m\}\). By a straightforward calculation, we have

$$\begin{aligned} \nabla \Phi _i^{KDB}(x;t)=(H_i(x)-t)\nabla G_i(x)+(G_i(x)-t)\nabla H_i(x)\ \ i\in \{1,\ldots ,m\}. \end{aligned}$$

Theorem 4

Assume that \(t^{k}\downarrow 0\) and \(\sigma ^{k}\downarrow 0\) as \(k\rightarrow \infty \). Let \(x^k\) be a stationary solution of \(\mathrm{(P_{\sigma ^k,t^k}^{KDB})}\), and \(x^*\) be an accumulation point of \(\{x^k\}\). If MPEC-CCQC holds at \(x^*\), then \(x^*\) is an M-stationary point of problem (1).

Proof

Recall that \(x^k\) is a stationary point of problem \(\mathrm{(P_{\sigma ^k,t^k}^{KDB})}\) if there exist multipliers \((\alpha ^k,\beta ^k,\pi ^k,\rho ^k,\gamma ^k)\) such that

$$\begin{aligned}{} & {} 0\in \nabla f(x^k) + \lambda \sum _{i=1}^{r} D_i \partial \varphi (D_i^\top x^k;\sigma ^k_i) + \sum _{i=1}^{q} \alpha _{i}^k\nabla g_{i}(x^k)+\sum _{i=1}^{s}\beta _{i}^k\nabla h_i(x^k)\nonumber \\{} & {} -\sum _{i=1}^{m}\pi _{i}^{k}\nabla G_{i}(x^k) -\sum _{i=1}^{m}\rho _{i}^{k}\nabla H_i(x^k)+\sum _{i=1}^{m}\gamma _i^{k}\nabla \Phi _{i}^{KDB}(x^k;t^k), \end{aligned}$$
(36)
$$\begin{aligned}{} & {} \alpha ^k_i\ge 0, g_i(x^k)\le 0, \alpha ^k_i g_i(x^k)=0,\ \forall i=1,\ldots ,q,\end{aligned}$$
(37)
$$\begin{aligned}{} & {} h_i(x^k)=0,\ \forall i=1,\ldots , s, \nonumber \\{} & {} \pi _i^k\ge 0, G_i(x^k)+t^k\ge 0, \pi _i^k (G_i(x^k)+t^k)=0,\ \forall i=1,\ldots ,m,\end{aligned}$$
(38)
$$\begin{aligned}{} & {} \rho _i^k\ge 0, H_i(x^k)+t^k\ge 0, \rho _i^k (H_i(x^k)+t^k)=0,\ \forall i=1,\ldots ,m,\end{aligned}$$
(39)
$$\begin{aligned}{} & {} \gamma _i^k\ge 0, \Phi _i^{KDB}(x^k;t^k)\le 0, \gamma _i^k \Phi _i^{KDB}(x^k;t^k)=0,\ \forall i=1,\ldots ,m. \end{aligned}$$
(40)

Let

$$\begin{aligned}{} & {} \mu _i^k:=\pi _i^k-\gamma _i^k(H_i(x^k)-t_k),\\{} & {} \nu _i^k:=\rho _i^k-\gamma _i^k(G_i(x^k)-t_k). \end{aligned}$$

Then (36) can be rewritten as

$$\begin{aligned} \nabla f(x^k) + \lambda \sum _{i=1}^{r} \xi ^k_i D_i + \sum _{i=1}^{q} \alpha _{i}^k\nabla g_{i}(x^k)+\sum _{i=1}^{s}\beta _{i}^k\nabla h_i(x^k)\nonumber \\ -\sum _{i=1}^{m}\mu _{i}^{k}\nabla G_{i}(x^k)-\sum _{i=1}^{m}\nu _{i}^{k}\nabla H_i(x^k)=0. \end{aligned}$$
(41)

where \(\xi ^k_i \in \partial \varphi (D_i^\top x^k; \sigma ^k_i)\) for all \(i=1,\ldots ,r\). By the definition of \(\varphi \), it is easy to see that

$$\begin{aligned} \lim _{k\rightarrow \infty }\xi ^k_i = \partial \psi (D_i^\top x^*) = |D_i^{T}x^*|^{p-1}\textrm{sign}(D_i^{\top }x^*) \quad \forall i\in {{\mathcal {I}}}_{\ne }^{*}. \end{aligned}$$

We next show that there exists a sequence \(z^k\rightarrow F(x^*)\) such that (41) holds with \(\alpha _i^k\in {{\mathcal {N}}}_{(0,\infty ]}(z_i^k)\) and \((\mu _i^k,\nu _i^k)\in {{\mathcal {N}}}_{{\mathcal {C}}}(z_i^k)\). Let \(z^k = (D_i^Tx^*\ i\in {{\mathcal {I}}}_0^*,g(x^k),h(x^k),R(x^*))\). It is clear that \(z^k\in \Lambda \). By (37), it is easy to see that \(\alpha _i^k\in {{\mathcal {N}}}_{(0,\infty ]}(z_i^k)\) for all \(i=1,\ldots ,q\). One can easily observe that if \(i\in {{\mathcal {I}}}_{+0}^*\), then \(G_i(x^*)>0\). Thus \(\pi _i^k=0\) by (38) and \(\gamma _i^k(H_i(x^k)-t_k)=0\) by (40). Hence \(\mu _i^k=\pi _i^k-\gamma _i^k(H_i(x^k)-t_k)=0\) for \(i\in {{\mathcal {I}}}_{+0}^*\). In the same way, we have \(\nu _i^k=0\) for \(i\in {{\mathcal {I}}}_{0+}^*\). Moreover, it is easy to see that if \(\mu _i^k<0\), then \(\pi _i^k=0\) and \(\gamma _i^k(H_i(x^k)-t_k)>0\). Thus, by (40), it follows \(G_i(x^k)-t_k = 0\) and by (39), it follows \(\rho _i^k=0\). Hence \(\nu _i^k=\rho _i^k-\gamma _i^k(G_i(x^k)-t_k)=0\) and then \(\mu _i^k\nu _i^k=0\) if \(\mu _i^k<0\). In the same way, we can have \(\mu _i^k\nu _i^k=0\) if \(\nu _i^k<0\). Consequently, we have \(\mu _i^k>0,\nu _i^k>0\) or \(\mu _i^k\nu _i^k=0\) for all i. Thus, by the expression of the normal cone to \({{\mathcal {C}}}\), we have \((\mu _i^k,\nu _i^k)\in {{\mathcal {N}}}_{{\mathcal {C}}}(z_i^k)\).

Based on the above discussions and the expression of the normal cone to \(\Lambda \), (41) can be written as

$$\begin{aligned} -\nabla f(x^k)-\lambda \sum _{i\in {{\mathcal {I}}}_{\not =}^*} \xi _{i}^{k}D_i \in \nabla F(x^k){{\mathcal {N}}}_\Lambda (z^k). \end{aligned}$$

Since MPEC-CCQC holds at \(x^*\), it follows that

$$\begin{aligned} 0\in \nabla f(x^*)+\lambda \sum _{i\in {{\mathcal {I}}}_{\not =}^*} \xi _{i}^{*}D_i +\nabla F(x^*){{\mathcal {N}}}_{\Lambda }(F(x^*)), \end{aligned}$$

indicating that \(x^*\) is an M-stationary point by Proposition 2. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, G. Approximation Methods for a Class of Non-Lipschitz Mathematical Programs with Equilibrium Constraints. J Optim Theory Appl 202, 1421–1445 (2024). https://doi.org/10.1007/s10957-024-02475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-024-02475-6

Keywords

Mathematics Subject Classification