Skip to main content

Advertisement

Log in

Proximal Point Method for Quasiconvex Functions in Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the convergence of the proximal point method for quasiconvex functions in finite dimensional complete Riemannian manifolds. We prove initially that, in the general case, when the objective function is proper and lower semicontinuous, each accumulation point of the sequence generated by the method, if it exists, is a limiting critical point of the function. Then, under the assumptions that the sectional curvature of the manifold is bounded above by some non negative constant and the objective function is quasiconvex we analyze two cases. When the constant is zero, the global convergence of the algorithm to a limiting critical point is assured and if it is positive, we prove the local convergence for a class of quasiconvex functions, which includes Lipschitz functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton New Jersey (2008)

    Book  Google Scholar 

  2. Adler, R., Dedieu, J.P., Margulies, J., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)

    Article  MathSciNet  Google Scholar 

  3. Ansari, Q.H., Babu, F., Zeeshan, M.: Incremental quasi-subgradient method for minimizing sum of geodesic quasi-convex functions on Riemannian manifolds with applications. Numer. Funct. Anal. Optim. 42(13), 1492–1521 (2021)

    Article  MathSciNet  Google Scholar 

  4. Azagra, D., Ferrera, J., López-Mesas, F.: Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  Google Scholar 

  5. Baygorrea, N., Papa Quiroz, E.A., Maculan, N.: Inexact proximal point methods for quasiconvex minimization on Hadamard manifolds. J. Oper. Res. Soc. China. 4, 397–424 (2016)

    Article  MathSciNet  Google Scholar 

  6. Baygorrea, N., Papa Quiroz, E.A., Maculan, N.: On the convergence rate of an inexact proximal point algorithm for quasiconvex minimization on Hadamard manifolds. J. Oper. Res. Soc. China. 5(4), 457–467 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bento, G., da Cruz Neto, J.X., Oliveira, P.R.: A new approach to the proximal point method: convergence on general Riemannian manifolds. J. Optim. Theory Appl. 168, 743–755 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bolte, J., Danillidis, A., Ley, O., Mazet, L.: Characterization of Lojasiewicz inequalities: subgradient flows, talweg, convexity. T. Am. Math. Soc. 362, 3319–3363 (2010)

    Article  Google Scholar 

  9. Boumal, N.: An Introduction to Optimization on Smooth Manifolds, Cambridge University Press (2023)

  10. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer-Verlag, Berlin (1999)

    Book  Google Scholar 

  11. Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388(1), 61–77 (2012)

    Article  MathSciNet  Google Scholar 

  12. da Cruz Neto, J.X., Ferreira, O.P., Lucambio Perez, L., Németh, S.Z.: Convex-and monotone-transformable mathematical programming and a proximal-like point method. J. Glob. Optim. 35, 53–69 (2006)

    Article  MathSciNet  Google Scholar 

  13. do Carmo, M.P.: Riemannian Geometry, Bikhausen, Boston, (1992)

  14. Ferreira, O., Louzeiro, M.S., Prudente, L.F.: Gradient method for optimization on Riemannian manifolds with lower bounded curvature. SIAM J. Optim. 29(4), 2517–2541 (2019)

    Article  MathSciNet  Google Scholar 

  15. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)

    Article  MathSciNet  Google Scholar 

  16. Ferreira, O.P., Németh, S., Xiao, L.: On the spherical quasi-convexity of quadratic functions on spherically subdual convex sets. J. Optim. Theory Appl. 187, 1–21 (2020)

    Article  MathSciNet  Google Scholar 

  17. Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982)

    Article  MathSciNet  Google Scholar 

  18. Gromicho, J.: Quasiconvex Optimization and Location Theory. Kluwer Academic Publishers, Dordrecht, the Netherlands (1998)

    Book  Google Scholar 

  19. Hu, J., Liu, X., Wen, Z.W.: A brief introduction to manifold optimization. J. Oper. Res. Soc. China 8, 199–248 (2020)

    Article  MathSciNet  Google Scholar 

  20. Huang, W., Wei, K.: Riemannian proximal gradient methods. Math. Program. 194, 371–413 (2022)

    Article  MathSciNet  Google Scholar 

  21. Kristály, A.: Nash-type equilibria on Riemannian manifolds: a variational approach. J. Math. Pures Appl. 101(5), 660–688 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lara, F.: On strongly quasiconvex functions: existence results and proximal point algorithms. J. Optim. Theory Appl. 192, 891–911 (2022)

    Article  MathSciNet  Google Scholar 

  23. Lara, F., Marcavillaca, R.T.: Bregman proximal point type algorithms for quasiconvex minimization. Optimization 73, 497–515 (2024)

    Article  MathSciNet  Google Scholar 

  24. Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  MathSciNet  Google Scholar 

  25. Luenberger, D.G.: The gradient projection method along geodesics. Manage. Sci. 18(11), 620–631 (1972)

    Article  MathSciNet  Google Scholar 

  26. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(3), 663–683 (2009)

    Article  MathSciNet  Google Scholar 

  27. Li, C., Yao, J.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control. Optim. 50(4), 2486–2514 (2012)

    Article  MathSciNet  Google Scholar 

  28. Nesterov, Y.E., Todd, M.J.: On the Riemannian geometry defined by self-concordant barrier and interior-point methods. Found. Comput. Math. 2, 333–361 (2002)

    Article  MathSciNet  Google Scholar 

  29. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 46–69 (2009)

    MathSciNet  Google Scholar 

  30. Papa Quiroz, E.A., Oliveira, P.R.: Full convergence of the proximal point method for quasiconvex function on Hadamard manifolds. ESAIM - Control Optim. Calc. Var. 18(2), 483–500 (2012)

    Article  MathSciNet  Google Scholar 

  31. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point method for minimizing quasiconvex locally Lipschitz functions on Hadamard manifolds. Nonlinear Anal. 75, 5924–5932 (2012)

    Article  MathSciNet  Google Scholar 

  32. Rapcsák, T.: Smooth Nonlinear Optimization in \(\mathbb{R}^n.\) Kluwer Academic Publishers, New York (1997)

  33. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)

    Article  MathSciNet  Google Scholar 

  34. Sakai, T.: Riemannian Geometry. American Mathematical Society, Providence, RI (1996)

    Book  Google Scholar 

  35. Smith, S.T.: Optimization techniques on Riemannian manifolds. Fields Inst. Commun. AMS, Provid. RI 3, 113–146 (1994)

    MathSciNet  Google Scholar 

  36. Tang, G.J., Zhou, L.W., Huang, N.J.: The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Optim. Lett. 7(4), 779–790 (2012)

    Article  MathSciNet  Google Scholar 

  37. Tang, G.J., Huang, N.J.: Rate of convergence for proximal point algorithms on Hadamard manifolds. Oper. Res. Lett. 42, 383–387 (2014)

    Article  MathSciNet  Google Scholar 

  38. Udriste, C.: Convex Function and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers, 1994

  39. Wang, X., Li, C., Wang, J., Yao, J.: Linear convergence of subgradient algorithm for convex feasibility on Riemannian manifolds. SIAM J. Optim. 25(4), 2334–2358 (2015)

    Article  MathSciNet  Google Scholar 

  40. Wang, X., López, G., Martín-Marquez, V., Li, C.J.: Monotone and accretive vector fields on Riemannian manifolds. Optim. Theory Appl. 146, 691–708 (2010)

    Article  MathSciNet  Google Scholar 

  41. Wang, X., López, G., Li, C., Yao, J.: Equilibrium problems on Riemannian manifolds with applications. J. Math. Anal. Appl. 473, 866–891 (2019)

    Article  MathSciNet  Google Scholar 

  42. Wang, X.M., Li, C., Yao, J.C.: Subgradient projection algorithms for convex feasibility on Riemannian manifolds with lower bounded curvatures. J. Optim. Theory Appl. 164(1), 202–217 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to the Optimization Research Group at Institute of Mathematics and Statistic of the Federal Goias University (IME-UFG), Brazil, by the suggestions developed during the Optimization Seminars. In particular to Orizon Ferreira and Glaydston Bento who give me some observations on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Alex Papa Quiroz.

Additional information

Communicated by Nicolas Hadjisavvas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiroz, E.A.P. Proximal Point Method for Quasiconvex Functions in Riemannian Manifolds. J Optim Theory Appl 202, 1268–1285 (2024). https://doi.org/10.1007/s10957-024-02482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-024-02482-7

Keywords

Mathematics Subject Classification