Skip to main content

Advertisement

Log in

Consistent Conjectural Variations Equilibrium for a Bilevel Human Migration Model

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper extends the human migration model introduced in previous works to the framework of consistent conjectural variations. First, we introduce the standard multiclass human migration network equilibrium model that describes the movement of migrants between locations. Next, we introduce the concept of conjectural variations, in which migrants conjecture about the (expected) utility of locations after their migration. We define the concept of conjectural variations equilibrium and present results regarding the conditions for its existence and uniqueness. Following that, we define the concept of consistency for the migrants’ conjectures and the consistent conjectural variations equilibrium (CCVE). Finally, we describe the conditions that guarantee the existence of the CCVE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akkoyunlu, S., Vickerman, R.: Migration and the efficiency of European labour markets, pp. 157–170. Physica-Verlag HD, Heidelberg (2001)

    MATH  Google Scholar 

  2. Bowley, A.L.: The Mathematical Groundwork of Economics: An Introductory Treatise. Clarendon Press, Oxford (1924)

  3. Bulavsky, V.A.: Structure of demand and equilibrium in a model of oligopoly. Econ. Math. Methods (Ekonomika i Matematicheskie Metody) 33(3), 112–134 (1997)

    MATH  Google Scholar 

  4. Causa, A., Jadamba, B., Raciti, F.: A migration equilibrium model with uncertain data and movement costs. Decisions Econ. Finan. 40, 159–175 (2017). https://doi.org/10.1007/s10203-017-0198-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Flores-Muñiz, J.G., Kalashnykova, N., Kalashnikov, V.V., Kreinovich, V.: Public Interest and Private Enterprize: New Developments. Springer, Berlin (2021). https://doi.org/10.1007/978-3-030-58349-1

  6. Frisch, R.: Monopoly, polypoly: the concept of force in the economy. Int. Econ. Papers 1, 23–36 (1951)

    MATH  Google Scholar 

  7. Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Am. Math. Soc. 3(1), 170–174 (1952). https://doi.org/10.2307/2032478

    Article  MathSciNet  MATH  Google Scholar 

  8. Huarachi-Benavídez, G.R., Flores-Muñiz, J.G., Kalashnykova, N., Kalashnikov, V.: Consistent conjectural variations equilibrium in the semi-mixed oligopoly. Math. Probl. Eng. 2021, 14 (2021). https://doi.org/10.1007/BF01580110

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalashnikov, V., Kalashnykova, N., Acosta Sánchez, Y.G., Kalashnikov, V.: Affective engineering in application to bi-level human migration models. In: Watada, J., Shiizuka, H., Lee, K.P., Otani, T., Lim, C.P. (eds.) Industrial Applications of Affective Engineering, pp. 27–38. Springer, Cham (2014)

  10. Kalashnikov, V., Kalashnykova, N., Flores-Muñiz, J.G.: Consistent conjectural variations coincide with the Nash solution in the meta-model. Netw Spat. Econ. (2019). https://doi.org/10.1007/s11067-019-09473-6

    Article  MATH  Google Scholar 

  11. Kalashnikov, V., Kalashnykova, N., Luévanos Rojas, R., Méndez Muños, M., Uranga, C., Luévanos Rojas, A.: Un modelo de migración humana: experimentos numéricos basados sobre los datos de las tres ciudades laguneras. Estudios Demogr. Urbanos 22(3), 731–760 (2007). https://doi.org/10.24201/edu.v22i3.1278

    Article  Google Scholar 

  12. Kalashnikov, V., Kalashnykova, N., Luévanos Rojas, R., Méndez Muños, M., Uranga, C., Luévanos Rojas, A.: Numerical experimentation with a human migration model. Eur. J. Oper. Res. 189(1), 208–229 (2008). https://doi.org/10.1016/j.ejor.2007.05.020

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalashnikov-Jr, V.V., Flores-Muñiz, J.G., Kalashnikov, V.V., Kalashnykova, N.I.: Consistent conjectural variations equilibrium in a semi-mixed duopoly. J. Adv. Comput. Intell. Intell. Inform. 21(7), 1125–1134 (2017). https://doi.org/10.20965/jaciii.2017.p1125

    Article  MATH  Google Scholar 

  14. Kalashnykova, N., Kalashnikov, V., Watada, J., Flores-Muñiz, J..G., Anwar, T., Lin, P..C.: Consistent conjectural variations equilibrium in a mixed oligopoly model with a labor-managed company and a discontinuous demand function. IEEE Access 10, 107,799-107,808 (2022). https://doi.org/10.1109/ACCESS.2022.3211960

    Article  MATH  Google Scholar 

  15. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Soc. Ind. Appl. Math. (2000). https://doi.org/10.1137/1.9780898719451

    Article  MATH  Google Scholar 

  16. Nagurney, A., Pan, J., Zhao, L.: Human migration networks. Eur. J. Oper. Res. 59(2), 262–274 (1992). https://doi.org/10.1016/0377-2217(92)90140-5

    Article  MATH  Google Scholar 

  17. Passacantando, M., Raciti, F., Nagurney, A.: International migrant flows: coalition formation among countries and social welfare. EURO J Comput. Opti. 11, 100,062 (2023). https://doi.org/10.1016/j.ejco.2023.100062

    Article  MathSciNet  MATH  Google Scholar 

  18. Solis-García, N., Flores-Muñiz, J.G., Kreinovich, V., Kalashnykova, N., Kalashnikov, V.: Consistent conjectural variations equilibrium for a financial model. J. Optim. Theory Appl. 194(3), 966–987 (2022). https://doi.org/10.1007/s10957-022-02060-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Watada, J., Flores-Muñiz, J.G., Kalashnikov, V., Kalashnykova, N.: Consistent conjectural variations equilibrium in a semi-mixed oligopoly with discontinuous demand. Int. J. Innov. Comput. Inform. Control 18(2), 395–415 (2022)

    MATH  Google Scholar 

  20. Yen, N.D.: Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint. Math. Oper. Res. 20(3), 695–708 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was financially supported in Mexico by the National Council for Science and Technology (CONAHCYT), CONAHCYT Program for Postdoctoral Stays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Guadalupe Flores-Muñiz.

Additional information

Communicated by Nguyen Dong Yen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osorio-González, D., Flores-Muñiz, J.G., Kalashnykova, N. et al. Consistent Conjectural Variations Equilibrium for a Bilevel Human Migration Model. J Optim Theory Appl 203, 2354–2369 (2024). https://doi.org/10.1007/s10957-024-02489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-024-02489-0

Keywords