Abstract
This paper extends the human migration model introduced in previous works to the framework of consistent conjectural variations. First, we introduce the standard multiclass human migration network equilibrium model that describes the movement of migrants between locations. Next, we introduce the concept of conjectural variations, in which migrants conjecture about the (expected) utility of locations after their migration. We define the concept of conjectural variations equilibrium and present results regarding the conditions for its existence and uniqueness. Following that, we define the concept of consistency for the migrants’ conjectures and the consistent conjectural variations equilibrium (CCVE). Finally, we describe the conditions that guarantee the existence of the CCVE.
Similar content being viewed by others
References
Akkoyunlu, S., Vickerman, R.: Migration and the efficiency of European labour markets, pp. 157–170. Physica-Verlag HD, Heidelberg (2001)
Bowley, A.L.: The Mathematical Groundwork of Economics: An Introductory Treatise. Clarendon Press, Oxford (1924)
Bulavsky, V.A.: Structure of demand and equilibrium in a model of oligopoly. Econ. Math. Methods (Ekonomika i Matematicheskie Metody) 33(3), 112–134 (1997)
Causa, A., Jadamba, B., Raciti, F.: A migration equilibrium model with uncertain data and movement costs. Decisions Econ. Finan. 40, 159–175 (2017). https://doi.org/10.1007/s10203-017-0198-4
Flores-Muñiz, J.G., Kalashnykova, N., Kalashnikov, V.V., Kreinovich, V.: Public Interest and Private Enterprize: New Developments. Springer, Berlin (2021). https://doi.org/10.1007/978-3-030-58349-1
Frisch, R.: Monopoly, polypoly: the concept of force in the economy. Int. Econ. Papers 1, 23–36 (1951)
Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Am. Math. Soc. 3(1), 170–174 (1952). https://doi.org/10.2307/2032478
Huarachi-Benavídez, G.R., Flores-Muñiz, J.G., Kalashnykova, N., Kalashnikov, V.: Consistent conjectural variations equilibrium in the semi-mixed oligopoly. Math. Probl. Eng. 2021, 14 (2021). https://doi.org/10.1007/BF01580110
Kalashnikov, V., Kalashnykova, N., Acosta Sánchez, Y.G., Kalashnikov, V.: Affective engineering in application to bi-level human migration models. In: Watada, J., Shiizuka, H., Lee, K.P., Otani, T., Lim, C.P. (eds.) Industrial Applications of Affective Engineering, pp. 27–38. Springer, Cham (2014)
Kalashnikov, V., Kalashnykova, N., Flores-Muñiz, J.G.: Consistent conjectural variations coincide with the Nash solution in the meta-model. Netw Spat. Econ. (2019). https://doi.org/10.1007/s11067-019-09473-6
Kalashnikov, V., Kalashnykova, N., Luévanos Rojas, R., Méndez Muños, M., Uranga, C., Luévanos Rojas, A.: Un modelo de migración humana: experimentos numéricos basados sobre los datos de las tres ciudades laguneras. Estudios Demogr. Urbanos 22(3), 731–760 (2007). https://doi.org/10.24201/edu.v22i3.1278
Kalashnikov, V., Kalashnykova, N., Luévanos Rojas, R., Méndez Muños, M., Uranga, C., Luévanos Rojas, A.: Numerical experimentation with a human migration model. Eur. J. Oper. Res. 189(1), 208–229 (2008). https://doi.org/10.1016/j.ejor.2007.05.020
Kalashnikov-Jr, V.V., Flores-Muñiz, J.G., Kalashnikov, V.V., Kalashnykova, N.I.: Consistent conjectural variations equilibrium in a semi-mixed duopoly. J. Adv. Comput. Intell. Intell. Inform. 21(7), 1125–1134 (2017). https://doi.org/10.20965/jaciii.2017.p1125
Kalashnykova, N., Kalashnikov, V., Watada, J., Flores-Muñiz, J..G., Anwar, T., Lin, P..C.: Consistent conjectural variations equilibrium in a mixed oligopoly model with a labor-managed company and a discontinuous demand function. IEEE Access 10, 107,799-107,808 (2022). https://doi.org/10.1109/ACCESS.2022.3211960
Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Soc. Ind. Appl. Math. (2000). https://doi.org/10.1137/1.9780898719451
Nagurney, A., Pan, J., Zhao, L.: Human migration networks. Eur. J. Oper. Res. 59(2), 262–274 (1992). https://doi.org/10.1016/0377-2217(92)90140-5
Passacantando, M., Raciti, F., Nagurney, A.: International migrant flows: coalition formation among countries and social welfare. EURO J Comput. Opti. 11, 100,062 (2023). https://doi.org/10.1016/j.ejco.2023.100062
Solis-García, N., Flores-Muñiz, J.G., Kreinovich, V., Kalashnykova, N., Kalashnikov, V.: Consistent conjectural variations equilibrium for a financial model. J. Optim. Theory Appl. 194(3), 966–987 (2022). https://doi.org/10.1007/s10957-022-02060-9
Watada, J., Flores-Muñiz, J.G., Kalashnikov, V., Kalashnykova, N.: Consistent conjectural variations equilibrium in a semi-mixed oligopoly with discontinuous demand. Int. J. Innov. Comput. Inform. Control 18(2), 395–415 (2022)
Yen, N.D.: Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint. Math. Oper. Res. 20(3), 695–708 (1995)
Acknowledgements
This research was financially supported in Mexico by the National Council for Science and Technology (CONAHCYT), CONAHCYT Program for Postdoctoral Stays.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Nguyen Dong Yen.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Osorio-González, D., Flores-Muñiz, J.G., Kalashnykova, N. et al. Consistent Conjectural Variations Equilibrium for a Bilevel Human Migration Model. J Optim Theory Appl 203, 2354–2369 (2024). https://doi.org/10.1007/s10957-024-02489-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-024-02489-0