Skip to main content
Log in

Polynomial Optimization: Tightening RLT-Based Branch-and-Bound Schemes with Conic Constraints

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper explores the potential of (nonlinear) conic constraints to tighten the relaxations of spatial branch-and-bound algorithms. More precisely, we contribute to the literature on the use of conic optimization for the efficient solution, to global optimality, of nonconvex polynomial optimization problems. Taking as baseline an RLT-based algorithm, we present different families of well-known conic-driven constraints: linear SDP-cuts, second-order cone constraints, and SDP constraints. We integrate these constraints in the baseline algorithm and present a thorough computational study to assess their performance, both with respect to each other and with respect to the standard RLT relaxations for polynomial optimization problems. Our main finding is that the different variants of nonlinear constraints (second-order cone and semidefinite) are the best performing ones in around \(50\%\) of the instances in widely used test sets. Additionally, we discuss how one can benefit from the use of machine learning to decide on the most suitable constraints to add to a given instance. The computational results show that the machine learning approach significantly outperforms each of the individual approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Most of the details on the test instances used in this research are included in this manuscript. Any additional information is available from the authors upon reasonable request.

Notes

  1. Refer to Section 5.4 in [29] for additional details.

  2. For further discussion on this and other approaches, the reader is referred to [50].

  3. Instances can be downloaded from https://raposa.usc.es/files/DS-TS.zip (DS), https://raposa.usc.es/files/MINLPLib-TS.zip (MINLPLib), and https://raposa.usc.es/files/QPLIB-TS.zip (QPLIB).

  4. The specific RAPOSa options to control the conic relaxations are: sdp, sdpcuts, sdpsolver, socp, and socpsolver. Refer to https://raposa.usc.es/requirements/ for further details.

  5. Refer to [29] for additional details.

  6. In our analysis we consider \(\varepsilon =0.001\).

  7. The reason for using \(\log (\text {time}+1)\) in the y-axis instead of \(\log (\text {time})\) is that solve times are often close to 0 and, with \(\log (\text {time}+1)\), these times are mapped again to (nonnegative) values close to 0.

  8. Similarly, the percentages of binding constraints at the root node do not provide much insight on what might be special for these subclasses of problems.

  9. VIG and CMIG stand for two graphs that can be associated to any given polynomial optimization problem: variables intersection graph and constraints-monomials intersection graph, and whose precise definitions is given in [26].

  10. Refer to [26] and [29] for further details. It is worth noting that in the former reference there is another branching rule that plays an important role: the dual rule. It is based on the dual values of the constraints in which each variable appears, but computing such values in the context of conic constraints is not straightforward and, therefore, we have chosen to exclude this rule from the analysis.

References

  1. Andersen, E.D., Andersen, K.D.: The Mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In: H. Frenk, K. Roos, T. Terlaky, S. Zhang (eds.) High Performance Optimization, Appl. Optim., vol. 33, pp. 197–232. Springer US, Boston, MA (2000). https://doi.org/10.1007/978-1-4757-3216-0_8

  2. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009). https://doi.org/10.1007/s10898-008-9372-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87, 131–152 (2000). https://doi.org/10.1007/s101079900106

    Article  MathSciNet  MATH  Google Scholar 

  4. Baltean-Lugojan, R., Bonami, P., Misener, R., Tramontani, A.: Scoring positive semidefinite cutting planes for quadratic optimization via trained neural networks. https://optimization-online.org/wp-content/uploads/2018/11/6943.pdf (2019)

  5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Method Softw. 24(4–5), 597–634 (2009). https://doi.org/10.1080/10556780903087124

    Article  MathSciNet  MATH  Google Scholar 

  6. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021). https://doi.org/10.1016/j.ejor.2020.07.063

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonami, P., Günlük, O., Linderoth, J.: Globally solving nonconvex quadratic programming problems with box constraints via integer programming methods. Math. Program. Comput. 10(3), 333–382 (2018). https://doi.org/10.1007/s12532-018-0133-x

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonami, P., Lodi, A., Schweiger, J., Tramontani, A.: Solving quadratic programming by cutting planes. SIAM J. Optim. 29(2), 1076–1105 (2019). https://doi.org/10.1137/16M107428X

    Article  MathSciNet  MATH  Google Scholar 

  9. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  10. Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Program. 141(1), 435–452 (2013). https://doi.org/10.1007/s10107-012-0534-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008). https://doi.org/10.1007/s10107-006-0080-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs. Math. Program. 181(1), 1–17 (2020). https://doi.org/10.1007/s10107-019-01367-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib-a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15, 114–119 (2003). https://doi.org/10.1287/ijoc.15.1.114.15159

    Article  MathSciNet  MATH  Google Scholar 

  14. Castro, P.M., Matos, H.A., Novais, A.Q.: An efficient heuristic procedure for the optimal design of wastewater treatment systems. Resour. Conserv. Recycl. 50(2), 158–185 (2007). https://doi.org/10.1016/j.resconrec.2006.06.013

    Article  MATH  Google Scholar 

  15. Castro, P.M., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using networks. Comput. Chem. Eng. 52, 249–261 (2013). https://doi.org/10.1016/j.compchemeng.2013.01.013

    Article  MATH  Google Scholar 

  16. Castro, P.M., Teles, J.P., Novais, A.Q.: Linear program-based algorithm for the optimal design of wastewater treatment systems. Clean Technol. Environ. Policy 11(1), 83–93 (2009). https://doi.org/10.1007/s10098-008-0172-5

    Article  MATH  Google Scholar 

  17. Czyzyk, J., Mesnier, M.P., More, J.J.: The NEOS server. IEEE Comput. Sci. Eng. 5, 68–75 (1998). https://doi.org/10.1109/99.714603

    Article  MATH  Google Scholar 

  18. Dalkiran, E., Sherali, H.D.: Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality. J. Glob. Optim. 57(4), 1147–1172 (2013). https://doi.org/10.1007/s10898-012-0024-z

    Article  MathSciNet  MATH  Google Scholar 

  19. Dalkiran, E., Sherali, H.D.: RLT-POS: reformulation-linearization technique-based optimization software for solving polynomial programming problems. Math. Program. Comput. 8, 337–375 (2016). https://doi.org/10.1007/s12532-016-0099-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002). https://doi.org/10.1007/s101070100263

    Article  MathSciNet  MATH  Google Scholar 

  21. Elloumi, S., Lambert, A.: Global solution of non-convex quadratically constrained quadratic programs. Optim. Method Softw. 34(1), 98–114 (2019). https://doi.org/10.1080/10556788.2017.1350675

    Article  MathSciNet  MATH  Google Scholar 

  22. FICO: FICO Xpress Optimization Suite (2024). Available at: https://www.fico.com/en/products/fico-xpress-optimization

  23. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: a mathematical programing language. Manage. Sci. 36, 519–554 (1990). https://doi.org/10.1287/mnsc.36.5.519

    Article  MATH  Google Scholar 

  24. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi, A., Misener, R., Mittelmann, H., Sahinidis, N., Vigerske, S., Wiegele, A.: QPLIB: a library of quadratic programming instances. Math. Program. Comput. 1, 237–265 (2018). https://doi.org/10.1007/s12532-018-0147-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem. Ann. Oper. Res. 188(1), 155–174 (2011). https://doi.org/10.1007/s10479-008-0481-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Ghaddar, B., Gómez-Casares, I., González-Díaz, J., González-Rodríguez, B., Pateiro-López, B., Rodríguez-Ballesteros, S.: Learning for spatial branching: an algorithm selection approach. INFORMS J. Comput. (2023). https://doi.org/10.1287/ijoc.2022.0090

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghaddar, B., Jabr, R.A.: Power transmission network expansion planning: a semidefinite programming branch-and-bound approach. Eur. J. Oper. Res. 274(3), 837–844 (2019). https://doi.org/10.1016/j.ejor.2018.10.035

    Article  MathSciNet  MATH  Google Scholar 

  28. Ghaddar, B., Vera, J.C., Anjos, M.F.: Second-order cone relaxations for binary quadratic polynomial programs. SIAM J. Optim. 21(1), 391–414 (2011). https://doi.org/10.1137/100802190

    Article  MathSciNet  MATH  Google Scholar 

  29. González-Rodríguez, B., Ossorio-Castillo, J., González-Díaz, J., González-Rueda, Á.M., Penas, D.R., Rodríguez-Martínez, D.: Computational advances in polynomial optimization: RAPOSa, a freely available global solver. J. Glob. Optim. 85(3), 541–568 (2023). https://doi.org/10.1007/s10898-022-01229-w

    Article  MathSciNet  MATH  Google Scholar 

  30. Gurobi Optimization: Gurobi Optimizer Reference Manual (2024). Available at: http://www.gurobi.com

  31. Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical programs in python. Math. Program. Comput. 3(3), 219–260 (2011). https://doi.org/10.1007/s12532-011-0026-8

    Article  MathSciNet  MATH  Google Scholar 

  32. IBM Corp.: IBM ILOG CPLEX Optimization Studio. CPLEX User’s Manual (2024). Available at: https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio

  33. Jeyakumar, V., Li, G.: Exact conic programming relaxations for a class of convex polynomial cone programs. J. Optim. Theory Appl. 172, 156–178 (2017). https://doi.org/10.1007/s10957-016-1023-x

    Article  MathSciNet  MATH  Google Scholar 

  34. Kannan, R., Nagarajan, H., Deka, D.: Strong partitioning and a machine learning approximation for accelerating the global optimization of nonconvex qcqps. arXiv preprint (2024). https://doi.org/10.48550/arXiv.2301.00306

  35. Karia, T., Adjiman, C.S., Chachuat, B.: Assessment of a two-step approach for global optimization of mixed-integer polynomial programs using quadratic reformulation. Comput. Chem. Eng. 165, 107909 (2022). https://doi.org/10.1016/j.compchemeng.2022.107909

    Article  MATH  Google Scholar 

  36. Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization relaxations. Math. Program. Comput. 10(3), 383–421 (2018). https://doi.org/10.1007/s12532-018-0138-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Kılınç, M.R., Sahinidis, N.V.: Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON. Optim. Method Softw. 33(3), 540–562 (2018). https://doi.org/10.1080/10556788.2017.1350178

    Article  MathSciNet  MATH  Google Scholar 

  38. Krislock, N., Malick, J., Roupin, F.: Biqcrunch: A semidefinite branch-and-bound method for solving binary quadratic problems. ACM Trans. Math. Softw. 43, 1–23 (2017). https://doi.org/10.1145/3005345

  39. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001). https://doi.org/10.1137/S1052623400366802

    Article  MathSciNet  MATH  Google Scholar 

  40. Lee, M., Ma, N., Yu, G., Dai, H.: Accelerating generalized benders decomposition for wireless resource allocation. IEEE Trans. Wirel. Commun. 20(2), 1233–1247 (2020). https://doi.org/10.1109/TWC.2020.3031920

    Article  MATH  Google Scholar 

  41. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236 (2017). https://doi.org/10.1007/s11750-017-0451-6

    Article  MathSciNet  MATH  Google Scholar 

  42. Lubin, M., Dowson, O., Garcia, J.D., Huchette, J., Legat, B., Vielma, J.P.: Jump 1.0: recent improvements to a modeling language for mathematical optimization. Math. Program. Comput. 15(3), 581–589 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  43. Meinshausen, N.: Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006)

    MathSciNet  MATH  Google Scholar 

  44. MOSEK ApS: Introducing the MOSEK Optimization Suite 10.2.1 (2024). https://docs.mosek.com/latest/intro/index.html

  45. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003). https://doi.org/10.1007/s10107-003-0387-5

    Article  MathSciNet  MATH  Google Scholar 

  46. Piccialli, V., Sudoso, A.M., Wiegele, A.: SOS-SDP: an exact solver for minimum sum-of-squares clustering. INFORMS J. Comput. (2022). https://doi.org/10.1287/ijoc.2022.1166

    Article  MathSciNet  MATH  Google Scholar 

  47. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2021). https://www.R-project.org/

  48. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121(2), 307–335 (2010). https://doi.org/10.1007/s10107-008-0235-8

    Article  MathSciNet  MATH  Google Scholar 

  49. Sahinidis, N.V.: BARON 21.1.13: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2017)

  50. Sherali, H.D., Dalkiran, E., Desai, J.: Enhancing RLT-based relaxations for polynomial programming problems via a new class of \(v\)-semidefinite cuts. Comput. Optim. Appl. 52(2), 483–506 (2012). https://doi.org/10.1007/s10589-011-9425-z

    Article  MathSciNet  MATH  Google Scholar 

  51. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J. Glob. Optim. 2(1), 101–112 (1992). https://doi.org/10.1007/BF00121304

    Article  MathSciNet  MATH  Google Scholar 

  52. Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7, 1–31 (1995). https://doi.org/10.1007/BF01100203

    Article  MathSciNet  MATH  Google Scholar 

  53. Shor, N.Z.: An approach to obtaining global extremums in polynomial mathematical programming problems. Cybernetics 23(5), 695–700 (1987). https://doi.org/10.1007/BF01074929

    Article  MathSciNet  MATH  Google Scholar 

  54. Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012). https://doi.org/10.1016/j.compchemeng.2012.02.018

    Article  MATH  Google Scholar 

  55. Wright, M.N., Ziegler, A.: ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77(1), 1–17 (2017). https://doi.org/10.18637/jss.v077.i01

    Article  MATH  Google Scholar 

  56. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees, the AE, and the Editor for their thorough and thoughtful comments that have contributed to improvements to the original submission. This work is part of the R+D+I project grants MTM2017-87197-C3 and PID2021-124030NB-C32, funded by MCIN/AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”/EU. This research was also funded by Grupos de Referencia Competitiva ED431C-2021/24 from the Consellería de Cultura, Educación e Universidades, Xunta de Galicia. Brais González-Rodríguez acknowledges support from the Spanish Ministry of Education through FPU grant 17/02643. Raúl Alvite-Pazó and Samuel Alvite-Pazó acknowledge support from CITMAga through project ITMATI-R-7-JGD. Bissan Ghaddar’s research is supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant 2017-04185 and by the Thompson Chair of Leadership and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bissan Ghaddar.

Additional information

Communicated by Luis Zuluaga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Rodríguez, B., Alvite-Pazó, R., Alvite-Pazó, S. et al. Polynomial Optimization: Tightening RLT-Based Branch-and-Bound Schemes with Conic Constraints. J Optim Theory Appl 204, 12 (2025). https://doi.org/10.1007/s10957-024-02558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-024-02558-4

Keywords

Mathematics Subject Classification