Skip to main content
Log in

A Method for Uncertain Linear Optimization Problems Through Polytopic Approximation of the Uncertainty Set

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this work, we propose a globally convergent iterative method to solve uncertain constrained linear optimization problems. Due to the nondeterministic nature of such a problem, we use the min-max approach to convert the given problem into a deterministic one. We show that the robust feasible sets of the problem corresponding to the uncertainty set and the convex hull of the uncertainty set are identical. This result helps to reduce the number of inequality constraints of the problem drastically; often, this result reduces the semi-infinite programming problem of the min-max robust counterpart into a problem with a finite number of constraints. Following this, we provide a necessary and sufficient condition for the boundedness of the robust feasible set of the problem. Moreover, we explicitly identify the robust feasible set of the problem for polytopic and ellipsoidal uncertainty sets. We present an algorithm to construct an inner polytope of the convex hull of a general uncertainty set under a certain assumption. This algorithm provides a point-wise inner polytopic approximation of the convex hull with arbitrarily small precision. We employ this inner polytopic approximation corresponding to the uncertainty set and the infeasible interior-point technique to derive an iterative approach to solve general uncertain constrained linear optimization problems. Global convergence for the proposed method is reported. Numerical experiments illustrate the practical behaviour of the proposed method on discrete, star-shaped, disc-shaped, and ellipsoidal uncertainty sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Algorithm 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

There is no data associated with this paper.

References

  1. Barvinok, A.: Thrifty approximations of convex bodies by polytopes. Int. Math. Res. Not. 2014(16), 4341–4356 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization—Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  6. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D.P.: Convex Optimization Algorithms. Athena Scientific, Nashua (2015)

    MATH  Google Scholar 

  8. Bertsimas, D., Nohadani, O., Teo, K.M.: Robust optimization for unconstrained simulation-based problems. Oper. Res. 58(1), 161–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bronstein, E.M.: Approximation of convex sets by polytopes. J. Math. Sci. 153(6), 727–762 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89(3), 507–541 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. El Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9(1), 33–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming—Sequential Unconstrained Minimization Techniques. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  15. García, J., Pope, C., Altimiras, F.: A distributed k-means segmentation algorithm applied to Lobesia botrana recognition. Complexity 2017, 1–14 (2017)

    Article  MATH  Google Scholar 

  16. Ghosh, D., Kishor, N., Zhao, X.: A Newton method for uncertain multiobjective optimization problems with finite uncertainty Set. J. Nonlinear Var. Anal. 9(1), 81–110 (2023)

    MATH  Google Scholar 

  17. Ghosh, D., Kishor, N.: Generalized ordered weighted aggregation robustness: A new robust counterpart to solve uncertain multi-objective optimization problems. Optim. Eng. (2024). https://doi.org/10.1080/0305215X.2024.2418341

    Article  MATH  Google Scholar 

  18. Graells-Garrido, E., García, J.: Visual Exploration of Urban Dynamics Using Mobile Data. In: García-Chamizo, J.M., Fortino, G., Ochoa, S.F. (eds.) Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information, pp. 480–491. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-26401-1_45

    Chapter  MATH  Google Scholar 

  19. Graells-Garrido, E., Peredo, O., García, J.: Sensing urban patterns with antenna mappings—the case of Santiago. Chile. Sens. 16(7), 1098 (2016)

    Article  MATH  Google Scholar 

  20. Gruber, P.M., Wills, J.M.: Handbook of Convex Geometry, vol. B. Elsevier, North Holland (1993)

    MATH  Google Scholar 

  21. Inuiguchi, M., Sakawa, M.: Minimax regret solution to linear programming problems with an interval objective function. Eur. J. Oper. Res. 86(3), 526–536 (1995)

    Article  MATH  Google Scholar 

  22. Ghosh, D., Ansari, Q.H., Ehrgott, M., Upadhayay, A.: An infeasible interior-point technique to generate the nondominated set for multiobjective optimization problems. Comput. Oper. Res. 155, 106236 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the sixteenth annual ACM symposium on Theory of Computing - STOC’ 84, pp. 302–311. ACMPress, New York (1984) https://dl.acm.org/doi/pdf/10.1145/800057.808695

  24. Khachiyan, L.G.: A polynomial algorithm in linear programming. Soviet Math. Doklady 244(5), 1093–1096 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Kishor, N., Ghosh, D., Zhao, X.: Generalized ordered weighted aggregation robustness to solve uncertain single objective optimization problems. (2024) arXiv:2410.03222

  26. Klamroth, K., Köbis, E., Schöbel, A., Tammer, C.: A unified approach to uncertain optimization. Eur. J. Oper. Res. 260(2), 403–420 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Klee, V., Minty, G.J.: How good is the simplex algorithm? Inequalities 3(3), 159–175 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Kochol, M.: A note on approximation of a ball by polytopes. Discrete Optim. 1(2), 229–231 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kojima, M., Megiddo, N., Mizuno, S.: A primal-dual infeasible-interior-point algorithm for linear programming. Math. Program. 61, 263–280 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lustig, I.J.: Feasibility issues in a primal-dual interior-point method for linear programming. Math. Program. 49, 145–162 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Naszódi, M., Nazarov, F., Ryabogin, D.: Fine approximation of convex bodies by polytopes. Am. J. Math. 142(3), 809–820 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peredo, O.F., García, J.A., Stuven, R., Ortiz, J.M.: Urban Dynamic Estimation Using Mobile Phone Logs and Locally Varying Anisotropy. In: Gómez-Hernández, J.J., Rodrigo-Ilarri, J., Rodrigo-Clavero, M.E., Cassiraga, E., Vargas-Guzmán, J.A. (eds.) Geostatistics Valencia 2016, pp. 949–964. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-46819-8_66

    Chapter  Google Scholar 

  33. Schöbel, A.: Generalized light robustness and the trade-off between robustness and nominal quality. Math. Oper. Res. 80(2), 161–191 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

    Article  MATH  Google Scholar 

  35. Tanabe, K.: Centered Newton method for linear programming: Interior and “exterior" point method. In: Tone, K., (ed.): New Methods for Linear Programming, The Institute of Statistical Mathematics, Tokyo, Japan, vol. 19, pp. 98–100. Japan (1990)

  36. Terlaky, T.: Interior Point Methods of Mathematical Programming. Springer Science & Business Media, (2013)

  37. Upadhayay, A., Ghosh, D., Ansari, Q.H.: Jauny: augmented Lagrangian cone method for multiobjective optimization problems with an application to an optimal control problem. Optim. Eng. 24(3), 1633–1665 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vanderbei, R.J.: Data Science Applications. In: Linear Programming: Foundations and Extensions, pp. 187–213. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-39415-8_12

    Chapter  MATH  Google Scholar 

  39. Vanderbei, R.J.: Linear Programming—Foundations and Extensions. Springer, New York (2008)

    MATH  Google Scholar 

  40. Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu, H., Luo, H., Zhang, X., Qi, H.: An effective global algorithm for worst-case linear optimization under polyhedral uncertainty. J. Glob. Optim. 87, 191–219 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Y.: On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Optim. 4(1), 208–227 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to two anonymous reviewers for their critical comments to improve the paper.

Funding

Debdas Ghosh acknowledges the financial support of the research grants MATRICS (MTR/2021/000696) and Core Research Grant (CRG/2022/001347) by the Science and Engineering Research Board, India. Ravi Raushan thankfully acknowledges financial support from CSIR, India, through a research fellowship (File No. 09/1217(13822)/2022-EMR-I) to carry out this research work. Yong Zhao was supported in part by the National Natural Science Foundation of China under grants (12001072), the NSFC-RGC (Hong Kong) Joint Research Program (12261160365), the Chongqing Natural Science Foundation Project under grant (CSTB2022NSCQMSX1318) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202400760).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors do not have any conflict of interest or conflict of interest to declare. They also do not have any funding conflicts to declare.

Ethicsal Approval

This article does not involve any human and/or animal studies.

Consent for Publication

Not applicable to this article.

Additional information

Communicated by Qamrul Hasan Ansari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raushan, R., Ghosh, D., Zhao, Y. et al. A Method for Uncertain Linear Optimization Problems Through Polytopic Approximation of the Uncertainty Set. J Optim Theory Appl 205, 14 (2025). https://doi.org/10.1007/s10957-025-02626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-025-02626-3

Keywords

Mathematics Subject Classification