Skip to main content

Advertisement

Log in

An Extended C&CG Algorithm for Solving Two-Stage Robust Optimization of Economic and Feasible Scheduling

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The extensively researched column-and-constraint-generation (C&CG) algorithm, which utilizes the KKT (Karush–Kuhn–Tucker) condition or duality theory to reformulate the subproblem, encounters challenges when solving two-stage robust optimization (TSRO) problems with extreme parameters that could adversely affect the feasibility of the second-stage decision. After the analysis of the original C&CG algorithm, an extended C&CG algorithm with multiple subproblems is proposed to overcome the challenges, which decompose a TSRO model into the master problem and several subproblems searching for the worst-case scenarios. A simple linear case is given to show the shortcoming of the traditional C&CG algorithm and the advantage of the extended C&CG algorithm. Then, a TSRO model for the scheduling optimization of electricity system considering the optimal power flow (OPF) is proposed, in order to explore the effectiveness of the extended C&CG algorithm in handling the general optimization problem while considering the feasibility. Finally, the proposed solving method is validated by case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Avvari, R.K., Kumar, V.D.: A new hybrid evolutionary algorithm for multi-objective optimal power flow in an integrated WE, PV, and PEV power system. Electr. Power Syst. Res. 214, 108870 (2023)

    Article  Google Scholar 

  2. Chen, J., Zhang, W.T., Zhang, Y.C., Bao, G.N.: Day-ahead scheduling of distribution level integrated electricity and natural gas system based on fast-ADMM with restart algorithm. IEEE Access 6, 17557–17569 (2018)

    Article  Google Scholar 

  3. Chen, Y., Liu, F., Wei, W., Mei, S.W., Chang, N.C.: Robust unit commitment for large-scale wind generation and run-off-river hydropower. CSEE J. Power Energy Syst. 2, 66–75 (2016)

    Article  Google Scholar 

  4. Cobos, N.G., Arroyo, J.M., Alguacil, N., Street, A.: Network-constrained unit commitment under significant wind penetration: a multistage robust approach with non-fixed recourse. Appl. Energy 232, 489–503 (2018)

    Article  Google Scholar 

  5. Cobos, N.G., Arroyo, J.M., Alguacil, N., Street, A.: Robust energy and reserve scheduling under wind uncertainty considering fast-acting generators. IEEE Trans. Sustain. Energy 10, 2142–2151 (2019)

    Article  Google Scholar 

  6. Fu, X.Q., Wu, X.P., Zhang, C.Y., Fan, S.Q., Liu, N.A.: Planning of distributed renewable energy systems under uncertainty based on statistical machine learning. Prot. Control Mod. Power Syst. 7, 41 (2022)

    Article  Google Scholar 

  7. Gao, H.J., Liu, J.Y., Wang, L.F., Wei, Z.B.: Decentralized energy management for networked microgrids in future distribution systems. IEEE Trans. Power Syst. 33, 3599–3610 (2018)

    Article  Google Scholar 

  8. Ge, Y.L., Wang, C., Hao, Y.C., Han, G.G., Lu, Y.: Robust optimal dispatch of distribution system considering carbon capture and demand response. Front. Energy Res. 10, 995714 (2022)

    Article  Google Scholar 

  9. Gong, Y.Z., Chung, C.Y., Mall, R.S.: Power system operational adequacy evaluation with wind power ramp limits. IEEE Trans. Power Syst. 33, 2706–2716 (2018)

    Article  Google Scholar 

  10. Haghighat, H., Zeng, B.: Security-constrained robust dynamic power system planning with discrete recourse. Electr. Power Syst. Res. 214, 108858 (2023)

    Article  Google Scholar 

  11. He, C., Wu, L., Liu, T.Q., Wei, W., Wang, C.: Co-optimization scheduling of interdependent power and gas systems with electricity and gas uncertainties. Energy 159, 1003–1015 (2018)

    Article  Google Scholar 

  12. He, Y., Li, Z.T., Zhang, J., Shi, G.Y., Cao, W.P.: Day-ahead and intraday multi-time scale microgrid scheduling based on light robustness and MPC. Int. J. Electr. Power Energy Syst. 144, 108546 (2023)

    Article  Google Scholar 

  13. Huang, Z.H., Zhang, Y.C., Xie, S.W.: Data-adaptive robust coordinated optimization of dynamic active and reactive power flow in active distribution networks. Renew. Energy 188, 164–183 (2022)

    Article  Google Scholar 

  14. Jin, X.Y., Liu, B.X., Liao, S.L., Cheng, C.T., Zhang, Y., Zhao, Z.P., Lu, J.: Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties. Energy 260, 125107 (2022)

    Article  Google Scholar 

  15. Kong, F., Mi, J.H., Wang, Y.W.: A two-stage distributionally robust optimization model for optimizing water-hydrogen complementary operation under multiple uncertainties. J. Clean. Prod. 378, 134538 (2022)

    Article  Google Scholar 

  16. Li, X., Zhai, Q.Z.: Multi-stage robust transmission constrained unit commitment: a decomposition framework with implicit decision rules. Int. J. Electr. Power Energy Syst. 108, 372–381 (2019)

    Article  Google Scholar 

  17. Li, Y., Bu, F.J., Gao, J.K., Li, G.Q.: Optimal dispatch of low-carbon integrated energy system considering nuclear heating and carbon trading. J. Clean. Prod. 378, 134540 (2022)

    Article  Google Scholar 

  18. Li, Y., Li, Z.Y., Wen, F.S., Shahidehpour, M.: Minimax-regret robust co-optimization for enhancing the resilience of integrated power distribution and natural gas systems. IEEE Trans. Sustain. Energy 11, 61–71 (2020)

    Article  Google Scholar 

  19. Liu, Y.X., Guo, L., Wang, C.S.: A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids. Appl. Energy 228, 130–140 (2018)

    Article  Google Scholar 

  20. Ma, Y.H., Xu, W.H., Yang, H.J., Zhang, D.B.: Two-stage stochastic robust optimization model of microgrid day-ahead dispatching considering controllable air conditioning load. Int. J. Electr. Power Energy Syst. 141, 108174 (2022)

    Article  Google Scholar 

  21. Qazi, A., Hussain, F., Abd Rahim, N., Hardaker, G., Alghazzawi, D., Shaban, K., Haruna, K.: Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Access 7, 63837–63851 (2019)

    Article  Google Scholar 

  22. Qiu, H.F., Gu, W., Liu, P.X., Sun, Q.R., Wu, Z., Lu, X.: Application of two-stage robust optimization theory in power system scheduling under uncertainties: a review and perspective. Energy 251, 123942 (2022)

    Article  Google Scholar 

  23. Qiu, H.F., Gu, W., Xu, Y.L., Wu, Z., Zhou, S.Y., Pan, G.S.: Robustly multi-microgrid scheduling: stakeholder-parallelizing distributed optimization. IEEE Trans. Sustain. Energy 11, 988–1001 (2020)

    Article  Google Scholar 

  24. Roslan, M.F., Hannan, M.A., Ker, P.J., Mannan, M., Muttaqi, K.M., Mahlia, T.M.I.: Microgrid control methods toward achieving sustainable energy management: a bibliometric analysis for future directions. J. Clean. Prod. 348, 131340 (2022)

    Article  Google Scholar 

  25. Shao, C.C., Wang, X.F., Shahidehpour, M., Wang, X.L., Wang, B.Y.: Security-constrained unit commitment with flexible uncertainty set for variable wind power. IEEE Trans. Sustain. Energy 8, 1237–1246 (2017)

    Article  Google Scholar 

  26. Tsang, M.Y., Shehadeh, K.S., Curtis, F.E.: An inexact column-and-constraint generation method to solve two-stage robust optimization problems. Oper. Res. Lett. 51, 92–98 (2023)

    Article  MathSciNet  Google Scholar 

  27. Upadhyay, A., Hu, B.Q., Li, J., Wu, L.: A chance-constrained wind range quantification approach to robust SCUC by determining dynamic uncertainty intervals. CSEE J. Power Energy Syst. 2, 54–64 (2016)

    Article  Google Scholar 

  28. Wang, C., Gong, Z.H., He, C., Gao, H.J., Bi, T.S.: Data-driven adjustable robust unit commitment of integrated electric-heat systems. IEEE Trans. Power Syst. 36, 1385–1398 (2021)

    Article  Google Scholar 

  29. Wu, M., Xu, J.Z., Zeng, L.J., Li, C., Liu, Y.X., Yi, Y.Q., Wen, M., Jiang, Z.H.: Two-stage robust optimization model for park integrated energy system based on dynamic programming. Appl. Energy 308, 118249 (2022)

    Article  Google Scholar 

  30. Ye, H.X., Wang, J.H., Ge, Y.Y., Li, J., Li, Z.Y.: Robust integration of high-level dispatchable renewables in power system operation. IEEE Trans. Sustain. Energy 8, 826–835 (2017)

    Article  Google Scholar 

  31. Zdraveski, V., Vuletic, J., Angelov, J., Todorovski, M.: Radial distribution network planning under uncertainty by implementing robust optimization. Int. J. Electr. Power Energy Syst. 149, 109043 (2023)

    Article  Google Scholar 

  32. Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 41, 457–461 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhong, X.J., Sun, X.B., Wu, Y.H.: A capacity optimization method for a hybrid energy storage microgrid system based on an augmented \(\varepsilon \)- constraint method. Energies 15, 7593 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LGG22F030008

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhejing Bao.

Additional information

Communicated by Aviv Gibali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Bao, Z., Lu, L. et al. An Extended C&CG Algorithm for Solving Two-Stage Robust Optimization of Economic and Feasible Scheduling. J Optim Theory Appl 205, 24 (2025). https://doi.org/10.1007/s10957-025-02642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-025-02642-3

Keywords

Mathematics Subject Classification