Skip to main content
Log in

The Error and Perturbation Bounds of the General Absolute Value Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

To our knowledge, the error and perturbation bounds of the general absolute value equations (AVE) are not discussed. In order to fill in this study gap, in this paper, by introducing a class of absolute value functions, we study the error and perturbation bounds of these two AVEs: \(Ax-B|x|=b\) and \(Ax-|Bx|=b\). Some useful error bounds and perturbation bounds of the above two AVEs are provided. Without limiting the matrix type, some computable estimates for the relevant upper bounds are given. By applying the absolute value equations, a new approach for some existing perturbation bounds of the linear complementarity problem (LCP) in (SIAM J. Optim., 18 (2007) 1250-1265) is provided. Some numerical examples for the AVEs from the LCP are given to show the feasibility of the perturbation bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Ahn, B.H.: Iterative methods for linear complementarity problems with upperbounds on primary variables. Math. Program. 26, 295–315 (1983)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  Google Scholar 

  3. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. Academic, New York (1979)

    Google Scholar 

  4. Bokhoven, W.M.G.V.: A class of linear complementarity problems is solvable inpolynomial time. University of Technology, The Netherlands, Department of Electrical Engineering (1980)

    Google Scholar 

  5. Chen, C.-R., Yang, Y.-N., Yu, D.-M., Han, D.-R.: An inverse-free dynamical system for solving the absolute value equations. Appl. Numer. Math. 168, 170–181 (2021)

    Article  MathSciNet  Google Scholar 

  6. Chen, C.-R., Yu, D.-M., Han, D.-R.: Exact and inexact Douglas-Rachford splitting methods for solving large-scale sparse absolute value equations. IMA J. Numer. Anal. 43, 1036–1060 (2023)

    Article  MathSciNet  Google Scholar 

  7. Chen, X.-J., Xiang, S.-H.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim. 18, 1250–1265 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chen, X.-J., Xiang, S.-H.: Computation of error bounds for P-matrix linear complementarity problems. Math. Program. 106, 513–525 (2006)

    Article  MathSciNet  Google Scholar 

  9. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

  10. Iqbal, J., Iqbal, A., Arif, M.: Levenberg-Marquardt method for solving systems of absolute value equations. J. Comput. Appl. Math. 282, 134–138 (2015)

    Article  MathSciNet  Google Scholar 

  11. Kumar, S., Deepmala, Hladík M., Moosaei, H.: Characterization of unique solvability of absolute value equations: An overview, extensions, and future directions. Optim. Lett. 18(4), 889–907 (2024)

    Article  MathSciNet  Google Scholar 

  12. Li, C.-X.: Sufficient conditions for the unique solution of a new class of Sylvester-like absolute value equations. J. Optim. Theory Appl. 195, 676–683 (2022)

    Article  MathSciNet  Google Scholar 

  13. Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1(1), 3–8 (2007)

    Article  MathSciNet  Google Scholar 

  14. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007)

    Article  MathSciNet  Google Scholar 

  15. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3, 101–108 (2009)

    Article  MathSciNet  Google Scholar 

  16. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419, 359–367 (2006)

    Article  MathSciNet  Google Scholar 

  17. Mezzadri, F.: On the solution of general absolute value equations. Appl. Math. Lett. 107, 106462 (2020)

    Article  MathSciNet  Google Scholar 

  18. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, (1970)

  19. Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)

    Article  MathSciNet  Google Scholar 

  20. Rohn, J.: A theorem of the alternatives for the equation \(Ax + B |x|= b\). Linear Multilinear A. 52, 421–426 (2004)

    Article  MathSciNet  Google Scholar 

  21. Rohn, J.: An algorithm for solving the absolute value equations. Electron J. Linear Al. 18, 589–599 (2009)

    MathSciNet  Google Scholar 

  22. Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78 (1989)

    Article  MathSciNet  Google Scholar 

  23. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8, 35–44 (2014)

    Article  MathSciNet  Google Scholar 

  24. Salkuyeh, D.K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8, 2191–2202 (2014)

    Article  MathSciNet  Google Scholar 

  25. Skeel, R.D.: Scaling for numerical stability in Gauss elimination. J. Assoc. Comput. Mach. 26, 494–526 (1979)

    Article  MathSciNet  Google Scholar 

  26. Sun, J.-G.: Matrix Perturbation Theory (in Chinese). Science Press, Beijing (2001)

  27. Wei, Y.: Perturbation bound of singular linear systems. Appl. Math. Comput. 105, 211–220 (1999)

    MathSciNet  Google Scholar 

  28. Wu, S.-L.: The unique solution of a class of the new generalized absolute value equation. Appl. Math. Lett. 116, 107029 (2021)

    Article  MathSciNet  Google Scholar 

  29. Wu, S.-L., Li, C.-X.: A class of new modulus-based matrix splitting methods for linear complementarity problem. Optim. Lett. 16, 1427–1443 (2022)

    Article  MathSciNet  Google Scholar 

  30. Wu, S.-L., Li, C.-X.: A note on unique solvability of the absolute value equation. Optim. Lett. 14, 1957–1960 (2020)

    Article  MathSciNet  Google Scholar 

  31. Wu, S.-L., Li, C.-X.: The unique solution of the absolute value equations. Appl. Math. Lett. 76, 195–200 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wu, S.-L., Shen, S.-Q.: On the unique solution of the generalized absolute value equation. Optim. Lett. 15, 2017–2024 (2021)

    Article  MathSciNet  Google Scholar 

  33. Zamani, M., Hladík, M.: Error bounds and a condition number for the absolute value equations. Math. Program. 198, 85–113 (2023)

    Article  MathSciNet  Google Scholar 

  34. Zhang, C., Chen, X.-J., Xiu, N.-H.: Global error bounds for the extended vertical LCP. Comput. Optim. Appl. 42, 335–352 (2009)

    Article  MathSciNet  Google Scholar 

  35. Zhou, H.-Y., Wu, S.-L., Li, C.-X.: Newton-based matrix splitting method for generalized absolute value equation. J. Comput. Appl. Math. 394, 113578 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very much indebted to two anonymous referees for their constructive suggestions and helpful comments, which led to significant improvement of the original manuscript of this paper.

Funding

This research was supported by National Natural Science Foundation of China (No.11961082), Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province, China (No.202405AS350003), Yunnan Key Laboratory of Modern Analytical Mathematics and Applications (202302AN360007), Basic Research Projects of Key Scientific Research Projects Plan in Henan Higher Education Institutions (No. 25zx004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Liang Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Nobuo Yamashita.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CX., Wu, SL. The Error and Perturbation Bounds of the General Absolute Value Equations. J Optim Theory Appl 205, 53 (2025). https://doi.org/10.1007/s10957-025-02669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10957-025-02669-6

Keywords

Mathematics Subject Classification