Skip to main content
Log in

On Fork Arrow Logic and its Expressive Power

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

We compare fork arrow logic, an extension of arrow logic, and its natural first-order counterpart (the correspondence language) and show that both have the same expressive power. Arrow logic is a modal logic for reasoning about arrow structures, its expressive power is limited to a bounded fragment of first-order logic. Fork arrow logic is obtained by adding to arrow logic the fork modality (related to parallelism and synchronization). As a result, fork arrow logic attains the expressive power of its first-order correspondence language, so both can express the same input–output behavior of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Benthem, J.: Correspondence theory, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 2, Reidel, Dordrecht, 1984, pp. 167–248.

    Google Scholar 

  2. van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic, North-Holland, Amsterdam, 1991.

  3. van Benthem, J.: A note on dynamic arrow logic, in J. van Eijck and A. Visser (eds.), Logic and Information Flow, MIT Press, Cambridge, 1994.

    Google Scholar 

  4. Benevides, M. R. F. and Veloso, P.A.S.: Axiomatization and completeness for fork modal logic, in XII Encontro Brasileiro de Lógica, Itatiaia, RJ, Brazil, 1999, pp. 87–94.

  5. Brink, C.: Power structures, Algebra Universalis 30 (1993), 177–216.

    Article  Google Scholar 

  6. Chin, L. H. and Tarski, A.: Distributive and modular laws in the arithmetic of relation algebras, University of California Publications in Mathematics (N.S.) 1 (1951), 341–384.

    Google Scholar 

  7. Ebbinghaus, H.-D., Flum, J., and Thomas, W.: Mathematical Logic, Springer, Berlin Heidelberg New York, 1984.

    Google Scholar 

  8. Frias, M. F., Baum, G. A., and Haeberer, A. M.: Fork algebras in algebras, logic and computer science, Fundamenta Informaticæ 32 (1997), 1–25.

    Google Scholar 

  9. de Freitas, R. P., Viana, J. P., Veloso, P. A. S., Veloso, S. R. M., and Benevides, M. R. F.: Squares in fork arrow logic, Journal of Philosophical Logic 32 (2003), 343–355.

    Article  Google Scholar 

  10. Haeberer, A. M., Frias, M. F., Baum, G. A., and Veloso, P. A. S.: Fork algebras, in C. Brink, W. Kahl, and G. Schmidt (eds.), Relational Methods in Computer Science, Springer, Berlin Heidelberg New York, 1997, pp. 54–69.

    Google Scholar 

  11. Jónsson, B.: Varieties of relation algebras, Algebra Universalis 15 (1982), 273–298.

    Article  Google Scholar 

  12. Jónsson, B. and Tarski, A.: Boolean algebras with operators, parts I and II, American Journal of Mathematics 73 (1951), 891–939 and 74 (1952), 127–162.

    Google Scholar 

  13. Kripke, S.: A completeness theorem in modal logic, The Journal of Symbolic Logic, 24 (1959), 1–14.

    Google Scholar 

  14. Lemmon, E. J.: Algebraic semantics for modal logic I and II, The Journal of Symbolic Logic 31 (1966), 46–65 and 191–218.

    Google Scholar 

  15. Maddux, R. D.: Relation-algebraic semantics, Theoretical Computer Science 160 (1996), 1–85.

    Article  Google Scholar 

  16. Marx, M.: Relativization in Arrow Logic, Doctoral dissertation, Institute for Logic, Language and Computation, Universiteit van Amsterdam, 1995.

  17. Marx, M., Pólos, L., and Masuch, M.: Arrow Logic and Multi-Modal Logic, CSLI Publications, Stanford, CA, 1996.

    Google Scholar 

  18. Marx, M. and Venema, Y.: Multi-dimensional Modal Logic, Applied Logic Series, vol. 4, Kluwer, Dordrecht, 1997.

    Google Scholar 

  19. Neméti, I.: Algebrizations of quantifier logics, an introductory overview, Studia Logica 50 (3/4) (1991), 485–569.

    Article  Google Scholar 

  20. Tarski, A. and Givant, S.: A Formalization of Set Theory Without Variables, American Mathematical Society Colloquium Publications, vol. 41, American Mathematical Society, Providence, RI, 1987.

    Google Scholar 

  21. Veloso, P. A. S.: Some connections between logic and computer science, in W. Carnielli and I. M. L. d’Ottaviano (eds.), Advances in Contemporary Logic and Computer Science, AMS, Providence, RI, 1999, pp. 187–260.

    Google Scholar 

  22. Venema, Y.: Many-Dimensional Modal Logic, Doctoral dissertation, Institute for Logic, Language and Computation, Universiteit van Amsterdam, 1991.

  23. Venema, Y.: A crash course in arrow logic, in M. Marx, M. Masuch and L. Pólos, (eds.), Arrow Logic and Multi-Modal Logic, CSLI Publications, Stanford, CA, pp. 3–34.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata P. de Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veloso, P.A.S., de Freitas, R.P., Viana, P. et al. On Fork Arrow Logic and its Expressive Power. J Philos Logic 36, 489–509 (2007). https://doi.org/10.1007/s10992-006-9043-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-006-9043-x

Key words

Navigation