Skip to main content
Log in

Reasoning About Collectively Accepted Group Beliefs

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

A proof-theoretical treatment of collectively accepted group beliefs is presented through a multi-agent sequent system for an axiomatization of the logic of acceptance. The system is based on a labelled sequent calculus for propositional multi-agent epistemic logic with labels that correspond to possible worlds and a notation for internalized accessibility relations between worlds. The system is contraction- and cut-free. Extensions of the basic system are considered, in particular with rules that allow the possibility of operative members or legislators. Completeness with respect to the underlying Kripke semantics follows from a general direct and uniform argument for labelled sequent calculi extended with mathematical rules for frame properties. As an example of the use of the calculus we present an analysis of the discursive dilemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, L. J. (1992). An essay on belief & acceptance. New York: Oxford University Press.

    Google Scholar 

  2. de Boer, M., Herzig, A., de Lima, T., & Lorini, E. (2009). Tableaux for acceptance logic. In M. Baldoni, J. Bentahar, J. Lloyd, & M. B. van Riemsdijk (Eds.), Declarative agent languages and technologies: Seventh international workshop, DALT 2009, workshop notes (pp. 17–32).

  3. Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. MIT Press.

  4. Fischer, F. A. & Nickles, M. (2006). Computational opinions. In Proceedings of the 17th European conference on artificial intelligence (ECAI’06) (pp. 240–244).

  5. Gaudou, B., Herzig, A., & Longin, D. (2006). Grounding and the expression of belief. In Proceedings of the tenth international conference on principles of knowledge representation and reasoning (pp. 221–229). AAAI Press.

  6. Gaudou, B., Herzig, A., & Longin, D. (2011). Group belief and grounding in conversation. In A. Trognon, M. Batt, J. Caelen, & D. Vernant (Eds.), Logical properties of dialogue (pp. 59–96). Presses Universitaires de Nancy. http://www.univ-nancy2.fr/pun/.

  7. Gaudou, B., Herzig, A., Longin, D., & Nickles, M. (2006). A new semantics for the FIPA agent communication language based on social attitudes. In Proceedings of the 17th European conference on artificial intelligence (ECAI’06) (pp. 245–249).

  8. Gaudou, B., Longin, D., Lorini, E., & Tummolini, L. (2008). Anchoring institutions in agents’ attitudes: Towards a logical framework for autonomous multi-agent systems. In Proceedings of 7th international conference on autonomous agents and multiagent systems (AAMAS 2008) (pp. 728–735).

  9. Gilbert, M. (1987). Modelling collective belief. Synthese, 73, 185–204.

    Article  Google Scholar 

  10. Gilbert, M. (1989). On social facts. Routledge.

  11. Hakli, R. (2006). Group beliefs and the distinction between belief and acceptance. Cognitive Systems Research, 7, 286–297.

    Article  Google Scholar 

  12. Hakli, R., & Negri, S. (2007). Proof theory for distributed knowledge. In Computational logic in multi-agent systems. 8th international conference (CLIMA-VIII). LNCS 5056 (pp. 100–116). Springer.

  13. Herzig, A., de Lima, T., & Lorini, E. (2009). On the dynamics of institutional agreements. Synthese (Knowledge, Rationality & Action), 171, 321–355, 923–957.

    Google Scholar 

  14. Kripke, S. (1963). Semantical analysis of modal logic I. Normal modal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9, 67–96.

    Article  Google Scholar 

  15. List, C., & Pettit, P. (2002). Aggregating sets of judgments: An impossibility result. Economics and Philosophy, 18, 89–110.

    Google Scholar 

  16. Lorini, E., Longin, D., Gaudou, B., & Herzig, A. (2009). The logic of acceptance: Grounding institutions on agents’ attitudes. Journal of Logic and Computation, 19(6), 901–940.

    Article  Google Scholar 

  17. Negri, S. (2003). Contraction-free sequent calculi for geometric theories with an application to Barr’s theorem. Archive for Mathematical Logic, 42, 389–401.

    Article  Google Scholar 

  18. Negri, S. (2005). Proof analysis in modal logic. Journal of Philosophical Logic, 34, 507–544.

    Article  Google Scholar 

  19. Negri, S. (2009). Kripke completeness revisited. In G. Primiero & S. Rahman (Eds.), Acts of knowledge: History, philosophy and logic (pp. 233–266). College Publications.

  20. Negri, S., & von Plato, J. (1998). Cut elimination in the presence of axioms. The Bulletin of Symbolic Logic, 4, 418–435.

    Article  Google Scholar 

  21. Negri, S., & von Plato, J. (2001). Structural proof theory. Cambridge University Press.

  22. Negri, S., & von Plato, J. (2011). Proof analysis: A contribution to Hilbert’s last problem. Cambridge University Press.

  23. Pauly, M. (2007). Axiomatizing collective judgements in a minimal logical language. Synthese, 158, 233–250.

    Article  Google Scholar 

  24. Searle, J. R. (1995). The construction of social reality. New York: The Free Press.

    Google Scholar 

  25. Shoham, Y., & Leyton-Brown, K. (2009). Multiagent systems: Algorithmic, game-theoretic, and logical foundations. New York: Cambridge University Press.

    Google Scholar 

  26. Troelstra, A. S., & Schwichtenberg, H. (2000). Basic proof theory (2nd ed.). New York: Cambridge University Press.

    Google Scholar 

  27. Tuomela, R. (1992). Group beliefs. Synthese, 91, 285–318.

    Article  Google Scholar 

  28. Tuomela, R. (2007). The philosophy of sociality. Oxford University Press.

  29. Wansing, H. (1998). Displaying modal logic. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  30. Ågotnes, T., van der Hoek, W., & Wooldridge, M. (2007). Reasoning about judgment and preference aggregation. In Proceedings of the sixth international joint conference on autonomous agents and multiagent systems (AAMAS 2007) (pp. 554–561).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Hakli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakli, R., Negri, S. Reasoning About Collectively Accepted Group Beliefs. J Philos Logic 40, 531–555 (2011). https://doi.org/10.1007/s10992-011-9188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-011-9188-0

Keywords

Navigation