Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Machine Learning
  3. Article

Optimal dyadic decision trees

  • Published: 30 January 2007
  • Volume 66, pages 209–241, (2007)
  • Cite this article
Download PDF
Machine Learning Aims and scope Submit manuscript
Optimal dyadic decision trees
Download PDF
  • G. Blanchard1,
  • C. Schäfer1,
  • Y. Rozenholc2 &
  • …
  • K.-R. Müller1,3 
  • 891 Accesses

  • Explore all metrics

Abstract

We introduce a new algorithm building an optimal dyadic decision tree (ODT). The method combines guaranteed performance in the learning theoretical sense and optimal search from the algorithmic point of view. Furthermore it inherits the explanatory power of tree approaches, while improving performance over classical approaches such as CART/C4.5, as shown on experiments on artificial and benchmark data.

Article PDF

Download to read the full article text

Similar content being viewed by others

Modeling the Functioning of Decision Trees Based on Decision Rule Systems by Greedy Algorithm

Chapter © 2024

Learning Decision Trees with Flexible Constraints and Objectives Using Integer Optimization

Chapter © 2017

Decision Trees with at Most 19 Vertices for Knowledge Representation

Chapter © 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Artificial Intelligence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Adelson-Velskii, G. M., & Landis, E. M. (1962). An algorithm for the organization of information. Soviet Math. Doclady, 3, 1259–1263.

    Google Scholar 

  • Barron, A., Birgé, L., & Massart, P. (1999). Risk bounds for model selection via penalization. Probability Theory and Related Fields, 113, 301–413.

    Article  MATH  MathSciNet  Google Scholar 

  • Barron, A., & Sheu, C. (1991). Approximation of density functions by sequences of exponential families. Annals of Statistics, 19, 1347–1369.

    MATH  MathSciNet  Google Scholar 

  • Bartlett, P., Bousquet, O., & Mendelson, S. (2005). Local Rademacher complexities. Annals of Statistics, 33(4), 1497–1537.

    Article  MATH  MathSciNet  Google Scholar 

  • Blanchard, G. (2004). Different paradigms for choosing sequential reweighting algorithms. Neural Computation, 16, 811–836.

    Article  MATH  MathSciNet  Google Scholar 

  • Blanchard, G., Bousquet, O., & Massart, P. (2004). Statistical performance of support Vector Machines. Submitted manuscript.

  • Blanchard, G., Schäfer, C., & Rozenholc, Y. (2004). Oracle bounds and exact algorithm for dyadic classification trees. In J. Shawe-Taylor & Y. Singer (Eds.), Proceedings of the 17th Conference on Learning Theory (COLT 2004), number 3210 in lectures notes in artificial intelligence (pp. 378–392). Springer.

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  MATH  Google Scholar 

  • Breiman, L., Friedman, J., Olshen, J., & Stone, C. (1984). Classification and Regression Trees. Wadsworth.

  • Castellan, G. (2000). Histograms selection with an Akaike type criterion. C. R. Acad. Sci., Paris, Sér. I, Math., 330(8), 729–732.

    MATH  MathSciNet  Google Scholar 

  • Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley series in telecommunications. J. Wiley.

  • Devroye, L., Györfi, L., & Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition. Number 31 in Applications of Mathematics. New York: Springer.

  • Donoho, D. (1997). Cart and best-ortho-basis: A connection. Annals of Statistics, 25, 1870–1911.

    Article  MATH  MathSciNet  Google Scholar 

  • Gey, S., & Nédélec, E. (2005). Model selection for CART regression trees. IEEE Transactions on Information Theory, 51(2), 658–670.

    Article  Google Scholar 

  • Györfi, L., Kohler, M., & Krzyzak, A. (2002). A distribution-free theory of nonparametric regression. Springer series in statistics. Springer.

  • Klemelä, J. (2003). Multivariate histograms with data-dependent partitions. Technical report, Institut für angewandte Mathematik, Universität Heidelberg.

  • Massart, P. (2000). Some applications of concentration inequalities in statistics. Ann. Fac. Sci. Toulouse Math., 9(2), 245–303.

    MATH  MathSciNet  Google Scholar 

  • Mika, S., Rätsch, G., Weston, J., Schölkopf, B., & Müller, K.-R. (1999). Fisher discriminant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson & S. Douglas (Eds.), Neural networks for signal processing IX (pp. 41–48). IEEE.

  • Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo.

    Google Scholar 

  • Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft margins for AdaBoost. Machine Learning, 42(3), 287–320. also NeuroCOLT Technical Report NC-TR-1998-021.

    Article  MATH  Google Scholar 

  • Scott, C., & Nowak, R. (2004). Near-minimax optimal classification with dyadic classification trees. In S. Thrun, L. Saul & B. Schölkopf (Eds.), Advances in neural information processing systems 16. Cambridge, MA: MIT Press.

  • Scott, C., & Nowak, R. (2006). Minimax optimal classification with dyadic decision trees. IEEE Transactions on Information Theory, 52(4), 1335–1353.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Fraunhofer First (IDA), Kékuléstr. 7, D-12489, Berlin, Germany

    G. Blanchard, C. Schäfer & K.-R. Müller

  2. Applied Mathematics Department (MAP5), Université René Descartes, 45, rue des Saints-Pères, 75270, Paris Cedex, France

    Y. Rozenholc

  3. Computer Science Department, Technical University of Berlin, Franklinstr. 28/29, 10587, Berlin, Germany

    K.-R. Müller

Authors
  1. G. Blanchard
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. C. Schäfer
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Y. Rozenholc
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. K.-R. Müller
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to G. Blanchard.

Additional information

Editors: Olivier Bousquet and Andre Elisseeff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, G., Schäfer, C., Rozenholc, Y. et al. Optimal dyadic decision trees. Mach Learn 66, 209–241 (2007). https://doi.org/10.1007/s10994-007-0717-6

Download citation

  • Received: 22 April 2005

  • Revised: 10 October 2006

  • Accepted: 04 December 2006

  • Published: 30 January 2007

  • Issue Date: March 2007

  • DOI: https://doi.org/10.1007/s10994-007-0717-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Decision tree
  • Oracle inequality
  • Adaptive convergence rate
  • Classification
  • Density estimation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

3.14.83.200

Not affiliated

Springer Nature

© 2025 Springer Nature