Summary
Let <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>X$ be a real Banach space and $S(X) = \{x \in X: \|x\| = 1\}$ be the unit sphere of $X$. The parameters $E_{\epsilon}(X)=\sup\{\alpha_{\epsilon}(x): x \in S(X)\}$, $e_{\epsilon}(X)=\inf\{\alpha_{\epsilon}(x): x \in S(X)\}$, $F_{\epsilon}(X)=\sup\{\beta_{\epsilon}(x): x \in S(X)\}$, and $f_{\epsilon}(X)=\inf\{\beta_{\epsilon}(x): x \in S(X)\}$, where $\alpha_{\epsilon}(x) = \sup\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$ and $\beta_{\epsilon}(x) = \inf\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$, are defined and studied. The main result is that a Banach space $X$ with $E_{\epsilon}(X) < 2 + 2\epsilon +\frac{1}{2}\epsilon^{2}$ for some $0\leq \epsilon \leq 1$ has uniform normal structure.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gao, J. Normal structure and Pythagorean approach in Banach spaces. Period Math Hung 51, 19–30 (2005). https://doi.org/10.1007/s10998-005-0027-3
Issue Date:
DOI: https://doi.org/10.1007/s10998-005-0027-3