Skip to main content
Log in

Normal structure and Pythagorean approach in Banach spaces

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Summary

Let <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>X$ be a real Banach space and $S(X) = \{x \in X: \|x\| = 1\}$ be the unit sphere of $X$. The parameters $E_{\epsilon}(X)=\sup\{\alpha_{\epsilon}(x): x \in S(X)\}$, $e_{\epsilon}(X)=\inf\{\alpha_{\epsilon}(x): x \in S(X)\}$, $F_{\epsilon}(X)=\sup\{\beta_{\epsilon}(x): x \in S(X)\}$, and $f_{\epsilon}(X)=\inf\{\beta_{\epsilon}(x): x \in S(X)\}$, where $\alpha_{\epsilon}(x) = \sup\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$ and $\beta_{\epsilon}(x) = \inf\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$, are defined and studied. The main result is that a Banach space $X$ with $E_{\epsilon}(X) < 2 + 2\epsilon +\frac{1}{2}\epsilon^{2}$ for some $0\leq \epsilon \leq 1$ has uniform normal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J. Normal structure and Pythagorean approach in Banach spaces. Period Math Hung 51, 19–30 (2005). https://doi.org/10.1007/s10998-005-0027-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-005-0027-3