Summary
It follows from [1], [4] and [7] that any closed <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>n$-codimensional subspace ($n \ge 1$ integer) of a real Banach space $X$ is the kernel of a projection $X \to X$, of norm less than $f(n) + \varepsilon$~($\varepsilon > 0$ arbitrary), where \[ f (n) = \frac{2 + (n-1) \sqrt{n+2}}{n+1}. \] We have $f(n) < \sqrt{n}$ for $n > 1$, and \[ f(n) = \sqrt{n} - \frac{1}{\sqrt{n}} + O \left(\frac{1}{n}\right). \] (The same statement, with $\sqrt{n}$ rather than $f(n)$, has been proved in [2]. A~small improvement of the statement of [2], for $n = 2$, is given in [3], pp.~61--62, Remark.) In [1] for this theorem a deeper statement is used, on approximations of finite rank projections on the dual space $X^*$ by adjoints of finite rank projections on $X$. In this paper we show that the first cited result is an immediate consequence of the principle of local reflexivity, and of the result from [7].
Similar content being viewed by others
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Makai Jr., E., Martini, H. Projections of normed linear spaces with closed subspaces of finite codimension as kernels. Period Math Hung 52, 41–46 (2006). https://doi.org/10.1007/s10998-006-0004-5
Issue Date:
DOI: https://doi.org/10.1007/s10998-006-0004-5