Skip to main content
Log in

Projections of normed linear spaces with closed subspaces of finite codimension as kernels

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

It follows from [1], [4] and [7] that any closed <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>n$-codimensional subspace ($n \ge 1$ integer) of a real Banach space $X$ is the kernel of a projection $X \to X$, of norm less than $f(n) + \varepsilon$~($\varepsilon > 0$ arbitrary), where \[ f (n) = \frac{2 + (n-1) \sqrt{n+2}}{n+1}. \] We have $f(n) < \sqrt{n}$ for $n > 1$, and \[ f(n) = \sqrt{n} - \frac{1}{\sqrt{n}} + O \left(\frac{1}{n}\right). \] (The same statement, with $\sqrt{n}$ rather than $f(n)$, has been proved in [2]. A~small improvement of the statement of [2], for $n = 2$, is given in [3], pp.~61--62, Remark.) In [1] for this theorem a deeper statement is used, on approximations of finite rank projections on the dual space $X^*$ by adjoints of finite rank projections on $X$. In this paper we show that the first cited result is an immediate consequence of the principle of local reflexivity, and of the result from [7].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makai Jr., E., Martini, H. Projections of normed linear spaces with closed subspaces of finite codimension as kernels. Period Math Hung 52, 41–46 (2006). https://doi.org/10.1007/s10998-006-0004-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-006-0004-5