Summary
Every sequence of positive or negative homothetic copies of a triangle~<InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>T$ whose total area does not exceed $\frac{2}{9}$ of the area of $T$ can be translatively packed into $T$. The bound of $\frac{2}{9}$ cannot be improved upon here.
Similar content being viewed by others
Author information
Authors and Affiliations
About this article
Cite this article
Januszewski, J. A note on translative packing a triangle by sequences of its homothetic copies. Period Math Hung 52, 27–30 (2006). https://doi.org/10.1007/s10998-006-0010-7
Issue Date:
DOI: https://doi.org/10.1007/s10998-006-0010-7