Abstract
We discuss two techniques useful in the investigation of periodic solutions of broad classes of non-linear non-autonomous ordinary differential equations, namely the trigonometric collocation and the method based upon periodic successive approximations.
Similar content being viewed by others
References
M. Farkas, Autonóm rendszerek periodikus perturbációiról, Alkalmazott Matematikai Lapok, 1 (1975), 197–254.
N. N. Bogolyubov and Yu. A. Mitropolsky, Asmptotic Methods in the Theory of nonlinear Oscillations, Fizmatgiz, Moscow, 1963 (in Russian).
N. N. Bogolyubov, Yu. A. Mitropolsky and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics, Naukova Dumka, Kiev, 1969 (in Russian).
E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameter and Relaxation Oscillations, Nauka, Moscow, 1975 (in Russian).
J. Moser, Rapidly convergent method of iterations for nonlinear differential equations, Usp. Mat. Nauk, 23 (1968), 179–238.
V. A. Pliss, Integral Sets of Periodic Systems of Differential Equations, Nauka, Moscow, 1977 (in Russian).
I. T. Kiguradze, Some singular boundary value problems for ordinary differential equations, Izdat. Tbilis. Univ., Tbilisi, 1975 (in Russian).
I. Kiguradze and S. Mukhigulasvili, On periodic solutions of two-dimensional nonautonomous differential systems, Nonlinear Analysis, 60 (2005), 241–256.
M. Ronto and A. M. Samoilenko, Numerical-Analytic Methods in the Theory of Boundary-Value Problems, World Scientific, 2000.
M. A. Krasnoselsky, Functional-analytic methods in the thery of nonlinear oscillations, Proceedings of the Fifth International Conference on Nonlinear Oscillations, 1 (1970), 323–331.
L. Cesari, Functional analysis and periodic solutions of nonlinear differential equations, Contributions to Differential Equations, Vol. 1, Wiley, New York, 1963, 149–187.
J. Mawhin, Topological Degree Methods in Nonlinear Boundary-Value Problems, CBMS Regional Conference Series in Mathematics, Vol. 40, American Mathematical Society, Providence, RI, 1979.
J. K. Hale, Oscillations in Nonlinear systems, McGraw Hill, New York, 1963.
M. Farkas, Periodic Motions, Applied Mathematical Sciences 104, Springer-Verlag, New York-London, 1994.
R. E. Gaines and J. L. Mawhin, Coincidence degree, and nonlinear differential equations, Lecture Notes in Mathematics 568, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
A. Capietto, J. Mawhin and F. Zanolin, A continuation approach to superlinear periodic boundary-value problems, J. Differential Equation, 88 (1990), 347–385.
A. Capietto, J. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41–72.
M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii and V. Ya. Stetsenko, Approximate Solution of Operator Equations, Wolters-Noordoff Scientific Publications Ltd., Groningen, 1972.
M. Feckan, Minimal periods of periodic solutions, Miskolc Mathematical Notes, 7 (2006), 123–141.
U. M. Ascher, R. M. M. Mattheij and R. D. Russell, Numerical solution of boundary value problems for ordinary differential equations, Classics in Applied Mathematics 13, SIAM, Philadelphia, 1995.
H. B. Keller, Numerical Methods for Two-Point Boundary-Value Problems, Dover Publications Inc., N.Y., 1992.
S.L. Sobolev, Equations of Mathematical Physics, Gostekizdat, Moscow, 1947 (in Russian).
G. M. Vainikko, On the convergence and stability of the collocation method, Differents. Uravn., 1 (1965), 244–254.
G. M. Vainikko, On the convergence of the collocation method for nonlinear differential equations, Zh. Vychisl. Mat. i Mat. Fiz., 6 (1966), 35–42.
G. M. Vainikko, Approximate methods for nonlinear equations (two approaches to the convergence problem), Nonlinear Anal., 2 (1978), 647–687.
G. M. Vainikko, On the convergence of the difference method in the problem of periodic solutions of ordinary differential equations, Zh. Vychisl. Mat. i Mat. Fiz., 15 (1975), 87–100.
L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer, Berlin, 1963.
A. M. Samoilenko, Numerical-analytic method for the investigation of periodic systems of ordinary differential equations I, Ukr. Mat. Zh., 17 (1965), 82–93.
A. M. Samoilenko, Numerical-analytic method for the investigation of periodic systems of ordinary differential equations II, Ukr. Mat. Zh., 18 (1966), 50–59.
A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of Periodic Solutions, Mir, Moscow, 1979.
A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods for the Investigation of Solutions of Boundary-Value Problems, Naukova Dumka, Kiev, 1985 (in Russian).
A. M. Samoilenko and N. I. Ronto, Numerical-Analytic Methods in the Theory of Boundary-Value Problems for Ordinary Differential Equations, Naukova Dumka, Kiev, 1992 (in Russian).
M. Ronto and R. M. Tégen, Successive approximation method for three point boundary-value problem with singular matrixes, Mathematica Pannonica, 5 (1994), 15–29.
M. Rontó and A. Tuzson, Construction of periodic solutions of differential equations with impulse effect, Publ. Math. Debrecen, 44 (1994), 335–357.
M. Rontó and J. Mészáros, Some remarks on the convergence analysis of the numerical-analytic method based upon successive approximations, Ukr. Mat. Zh., 48 (1996), 90–95.
M. Rontó, Numerical-analytic successive approximation method for non-linear boundary value problems, Nonlinear Anal., 30 (1997), 3179–3188.
M. Rontó, On some existence results for parametrised boundary value problems, Publ. Univ. Miskolc Ser. D Nat. Sci. Math., 37 (1997), 95–103.
M. Rontó and A. Galántai, A computational modification of the numerical-analytic method for periodic BVPs, Nonlinear Oscillations, 2 (1999), 109–114.
M. Rontó and R. M. Tégen, Numerical-analytic method for investigating three point boundary value problems with parameters, Publ. Univ. Miskolc Ser. D Nat. Sci. Math., 40 (1999), 67–77.
M. Rontó and A. Tuzson, Modification of trigonometric collocation method for impulsive periodic BVP effect, Computers & Mathematics with Applications, 38 (1999), 117–123.
A. Ronto and M. Rontó, On the investigation some boundary value problems with non-linear conditions, Math. Notes (Miskolc), 1 (2000), 43–55.
M. Rontó, On the investigation of parametrized non-linear boundary value problems, Proc. 3rd World Congress of Nonlinear Analysts (July 19–26, 2000, Catania) Nonlinear Analysis, 47 (2001), 4409–4420.
M. Rontó, On nonlinear boundary value problems containing parameter, CDDE 2000 Proc., Archivum Mathematicum (Brno), 36 (2000), 583–593.
A. Ronto and M. Rontó, A note on the numerical-analytic method for non-linear two-point boundary value problems, Nonlinear Oscillations, 4 (2001), 112–128.
A. Ronto, M. Rontó, A. M. Samoilenko and S. I. Trofimchuk, On periodic solutions of autonomous difference equations, Georgian Mathematical Journal, 8 (2001), 135–164.
A. Ronto and M. Rontó, On some symmetry properties of periodic solutions, Nonlinear Oscillations, 6 (2003), 83–108.
M. Rontó and N. Shchobak, On the numerical-analytic investigations of parametrized problems with nonlinear boundary conditions, Nonlinear Oscillations, 6 (2003), 482–510.
A. Ronto and M. Rontó, On the (τ, E) property of periodic solutions, Folia Facultatis Scientiarum Naturalium, Universitas Masarykianae Brunensis, Mathematica, 13 (2003), 247–267.
M. Rontó and N. Shchobak, On parametrized problems with nonlinear boundary conditions, Electronic Journal of Qualitative Theory of Differential Equations, (2004), 24 pp.
A. M. Rontó, M. Rontó and N. Shchobak, On parametrization of three point nonlinear boundary value problems, Nonlinear Oscillations, 7 (2004), 395–413.
G. Bognár and M. Rontó, Numerical-analytic investigation of the radially symmetric solutions for some nonlinear PDEs, Computers & Mathematics with Applications, 50 (2005), 983–991.
G. Bognár, M. Rontó and N. Rajabov, On initial value problems related to p-Laplacian and pseudo-Laplacian, Acta Math. Hungar., 108 (2005), 1–12.
N. I. Ronto, A. M. Samoilenko and S. I. Trofimchuk, The theory of the numerical analytic method: achievements and new directions of development I, Ukrainian Math. J., 50 (1998), 116–135.
N. I. Ronto, A. M. Samoilenko and S. I. Trofimchuk, The theory of the numerical analytic method: achievements and new directions of development II, Ukrainian Math. J., 50 (1998), 255–277.
N. I. Ronto, A. M. Samoilenko and S. I. Trofimchuk, The theory of the numerical analytic method: achievements and new directions of development III, Ukrainian Math. J., 50 (1998), 1091–1114.
N. I. Ronto, A. M. Samoilenko and S. I. Trofimchuk, The theory of the numerical analytic method: achievements and new directions of development IV, Ukrainian Math. J., 50 (1998), 1888–1907.
N. I. Ronto, A. M. Samoilenko and S. I. Trofimchuk, The theory of the numerical analytic method: achievements and new directions of development V, Ukrainian Math. J., 51 (1999), 735–747.
N. I. Ronto, A. M. Samoilenko and S. I. Trofimchuk, The theory of the numerical analytic method: achievements and new directions of development VI, Ukrainian Math. J., 51 (1999), 1079–1094.
N. I. Ronto, A. M. Samoilenko and S. I. Trofimchuk, The theory of the numerical analytic method: achievements and new directions of development VII, Ukrainian Math. J., 51 (1999), 1399–1418.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to the memory of Professor Miklós Farkas
Supported in part by the Hungarian NFSR OTKA through Grant No. K68311.
Rights and permissions
About this article
Cite this article
Rontó, M. On two numerical-analytic methods for the investigation of periodic solutions. Period Math Hung 56, 121–135 (2008). https://doi.org/10.1007/s10998-008-5121-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-008-5121-3