Skip to main content
Log in

A central limit theorem for normalized products of random matrices

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

This note concerns the asymptotic behavior of a Markov process obtained from normalized products of independent and identically distributed random matrices. The weak convergence of this process is proved, as well as the law of large numbers and the central limit theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Atar and O. Zeitouni, Exponential stability for nonlinear filtering, Ann. Inst. Henri Poincaré, 33 (1997), 697–725.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Bougerol and J. Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics 8, Birkhäuser, Boston, 1985.

    MATH  Google Scholar 

  3. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Zurich, 1990.

    MATH  Google Scholar 

  4. R. Cavazos-Cadena, An alternative derivation of Birkhoff’s formula for the contraction coefficient of a positive matrix, Linear Algebra Appl., 375 (2003), 291–297.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Cavazos-Cadena and D. Hernández-Hernández, Successive approximations in partially observable controlled Markov chains with risk-sensitive average criterion, Stochastics, 77 (2005), 537–568.

    MathSciNet  MATH  Google Scholar 

  6. A. Crisanti, G. Paladin and A. Vulpiani, Products of Random Matrices in Statistical Physics, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  7. W.H. Fleming and D. Hernández-Hernández, Risk-sensitive control of finite state machines on an infinite horizon II, SIAM J. Control Optim., 37 (1999), 1048–1069.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108 (1963), 377–428.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist., 31 (1960), 457–469.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Furstenberg and Y. Kifer, Random products and measures on projective spaces, Israel J. Math., 46 (1983), 12–32.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Hennion, Limit theorems for random products of positive random matrices, Ann. Probab., 25 (1997), 1545–1587.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Mukherjea, Convergence in distribution of products of random matrices: a semigroup approach, Trans. Amer. Math. Soc., 303 (1987), 395–411.

    Article  MathSciNet  MATH  Google Scholar 

  13. V.I. Oseledec, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197–221.

    MathSciNet  Google Scholar 

  14. E. Seneta, Non-negative Matrices and Markov Chains, Springer-Verlag, Berlin-New York, 1981.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Cavazos-Cadena.

Additional information

Communicated by István Berkes

This work was supported by the PSF Organization under Grant No. 2005-7-02, and by the Consejo Nacional de Ciencia y Tecnología under Grants 25357 and 61423.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavazos-Cadena, R., Hernández-Hernández, D. A central limit theorem for normalized products of random matrices. Period Math Hung 56, 183–211 (2008). https://doi.org/10.1007/s10998-008-6183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-008-6183-3

Mathematics subject classification number

Key words and phrases