Abstract
On path partitions of the divisor graph. Let D(x) be the graph with vertices {1, 2, ..., ⌊x⌋} whose edges come from the division relation, and let D(x, y) be the subgraph restricted to the integers with prime factors less than or equal to y. We give sufficient conditions on x and y for the graph D(x, y) to be Hamiltonian. We deduce an asymptotic formula for the number of paths in D(x) needed to partition the set of vertices {1, 2, ..., ⌊x⌋}.
Similar content being viewed by others
Références
P. Erdös and É. Saias, Sur le graphe divisoriel, Acta Arith., 73 (1995), 189–198.
P. Mazet, Recouvrements hamiltoniens de certains graphes, European J. Combin., 27 (2006), 739–749.
C. Pomerance, On the longest simple path in the divisor graph, Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983), Congr. Numer., 40 (1983), 291–304.
É. Saias, Applications des entiers à diviseurs denses, Acta Arith., 83 (1998), 225–240.
É. Saias, Étude du graphe divisoriel III, Rend. Circ. Mat. Palermo (2), 52 (2003), 481–488.
G. Tenenbaum, Sur un problème de crible et ses applications II, Corrigendum et étude du graphe divisoriel, Ann. Sci. École Norm. Sup. (4), 28 (1995), 115–127.
G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2e édition, Cours spécialisés 1, Société mathématique de France, 1995.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by András Sárközy
Rights and permissions
About this article
Cite this article
Chadozeau, A. Sur Les Partitions en Chaînes du Graphe Divisoriel. Period Math Hung 56, 227–239 (2008). https://doi.org/10.1007/s10998-008-6227-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-008-6227-3