Skip to main content
Log in

Sur Les Partitions en Chaînes du Graphe Divisoriel

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

On path partitions of the divisor graph. Let D(x) be the graph with vertices {1, 2, ..., ⌊x⌋} whose edges come from the division relation, and let D(x, y) be the subgraph restricted to the integers with prime factors less than or equal to y. We give sufficient conditions on x and y for the graph D(x, y) to be Hamiltonian. We deduce an asymptotic formula for the number of paths in D(x) needed to partition the set of vertices {1, 2, ..., ⌊x⌋}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. P. Erdös and É. Saias, Sur le graphe divisoriel, Acta Arith., 73 (1995), 189–198.

    MathSciNet  MATH  Google Scholar 

  2. P. Mazet, Recouvrements hamiltoniens de certains graphes, European J. Combin., 27 (2006), 739–749.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Pomerance, On the longest simple path in the divisor graph, Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983), Congr. Numer., 40 (1983), 291–304.

    MathSciNet  Google Scholar 

  4. É. Saias, Applications des entiers à diviseurs denses, Acta Arith., 83 (1998), 225–240.

    MathSciNet  MATH  Google Scholar 

  5. É. Saias, Étude du graphe divisoriel III, Rend. Circ. Mat. Palermo (2), 52 (2003), 481–488.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Tenenbaum, Sur un problème de crible et ses applications II, Corrigendum et étude du graphe divisoriel, Ann. Sci. École Norm. Sup. (4), 28 (1995), 115–127.

    MathSciNet  MATH  Google Scholar 

  7. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2e édition, Cours spécialisés 1, Société mathématique de France, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Chadozeau.

Additional information

Communicated by András Sárközy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadozeau, A. Sur Les Partitions en Chaînes du Graphe Divisoriel. Period Math Hung 56, 227–239 (2008). https://doi.org/10.1007/s10998-008-6227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-008-6227-3

Mathematics subject classification number

Key words and phrases