Skip to main content
Log in

Concatenation of pseudorandom binary sequences

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In the applications it may occur that our initial pseudorandom binary sequence turns out to be not long enough, thus we have to take the concatenation or merging of it with other pseudorandom binary sequences. Here our goal is study when we can form the concatenation of several pseudorandom binary sequences belonging to a given family? We introduce and study new measures which can be used for answering this question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ahlswede, L.H. Khachatrian, C. Mauduit and A. Sárközy, A complexity measure for families of binary sequences, Period. Math. Hungar., 46 (2003), 107–118.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Ahlswede, C. Mauduit and A. Sárközy, Large families of pseudorandom sequences of k symbols and their complexity, Part I, Part II, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, Vol. 4123, Springer Verlag, 293–307.

  3. V. Anantharam, A technique to study the correlation measures of binary sequences, Discrete Math., to appear.

  4. M. Ben-Or, Probabilistic algorithms in finite fields, 22nd Annual Symposium on Foundations of Computer Science, IEEE, New York, 1981, 394–398.

    Google Scholar 

  5. J. Cassaigne, C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences VII: The measures of pseudorandomness, Acta Arith., 103 (2002), 97–118.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Galois, Sur la théorie des nombres, Écrits et Mémoires Mathématiques d’Évareste Galois, (R. Bourgne and J.-P. Arza eds.), Gauthier-Villars, 1830, 112–128.

  7. L. Goubin, C. Mauduit and A. Sárközy, Construction of large families of pseudorandom binary sequences, J. Number Theory, 106 (2004), 56–69.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Gyarmati, A note to the paper “On a fast version of a pseudorandom generator”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 49 (2006), 87–93.

    MATH  MathSciNet  Google Scholar 

  9. K. Gyarmati, On a family of pseudorandom binary sequences, Period. Math. Hungar., 49 (2004), 45–63.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Gyarmati, On a fast version of a pseudorandom generator, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science, Springer, Berlin — Heidelberg, 2006, 326–342.

    Chapter  Google Scholar 

  11. K. Gyarmati, A. Sárközy and A. Pethő, On linear recursion and pseudorandomness, Acta Arith., 118 (2005), 359–374.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Rivat and A. Sárközy, Modular construction of pseudorandom binary sequences with composite moduli, Period. Math. Hungar., 51 (2005), 75–107.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Mauduit, J. Rivat and A. Sárközy, Construction of pseudorandom binary sequences using additive characters, Monatsh. Math., 141 (2004), 197–208.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Mauduit and A. Sárközy, On finite pseudorandom binary sequence I: Measures of pseudorandomness, the Legendre symbol, Acta Arith., 82 (1997), 365–377.

    MATH  MathSciNet  Google Scholar 

  15. E. H. Moore, A doubly-infinite system of simple groups, Bull. Amer. Math. Soc., 3 (1893), 73–78.

    Article  MathSciNet  Google Scholar 

  16. M. O. Rabin, Probabilistic algorithms in finite fields, SIAM J. Comput., 9 (1980), 273–280.

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Rédei, Algebra, Pergamon Press, Oxford — New York — Toronto Ont., 1967.

    MATH  Google Scholar 

  18. V. Shoup, Fast construction of irreducible polynomials over finite fields, J. Symbolic Computation, 17 (1994), 371–391.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. Tóth, Collision and avalanche effect in famillies of pseudorandom binary sequences, Period. Math. Hungar., 55 (2007), 185–196.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Actualités Sci. Ind. 1041, Hermann, Paris, 1948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Gyarmati.

Additional information

Communicated by Attila Pethő

Research partially supported by Hungarian NFSR, Grants No. K49693, K67676, K72264 and the János Bolyai Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyarmati, K. Concatenation of pseudorandom binary sequences. Period Math Hung 58, 99–120 (2009). https://doi.org/10.1007/s10998-009-9099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-009-9099-x

Mathematics subject classification number

Key words and phrases

Navigation