Skip to main content
Log in

Functional Chung laws for small increments of the empirical process and a lower bound in the strong invariance principle

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Consider the set Θ n of all a n -sized increment processes of the uniform empirical process α n on [0, 1]. We assume that a n ↓ 0, na n ↑ ∞, d n = na n (log n)−1 → ∞ and na n (log n)−7/3 = O(1). In Berthet (1996, 2005) the fourth assumption was shown to be critical with respect to the pointwise rates of convergence in the functional law of Deheuvels and Mason (1992) for Θ n because strong approximation methods become ineffective at such a small scale a n . We are now able to study directly these small empirical increments and compute the exact rate of clustering of Θ n to any Strassen function having Lebesgue derivative of bounded variation by making use of a sharp small deviation estimate for a Poisson process of high intensity due to Shmileva (2003a). It turns out that the best rates are of order d 1/4 n (log n)−1 and are faster than in the Brownian case whereas the slowest rates are of order d −1/2 n and correspond to the apparently crude ones obtained in Berthet (2005) by means of Gaussian small ball probabilities. These different sharp properties of the empirical and Brownian paths imply an almost sure lower bound in the strong invariance principle and provide a new insight into the famous KMT approximation of α n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • de Acosta, A., Small deviations in the functional central limit theorem with applications to functional law of the iterated logarithm, Ann. Probab., 11 (1983), 78–101.

    Article  MATH  MathSciNet  Google Scholar 

  • Berthet, P., Vitesses de recouvrement dans les lois fonctionnelles du logarithme itéré pour les incréments du processus empirique uniforme avec applications statistiques, Ph. D. of University Paris, 6 (1996), 1–396.

    Google Scholar 

  • Berthet, P., On the rate of clustering to the Strassen set for increments of the uniform empirical process, J. Theoret. Probab., 10 (1997), 557–579.

    Article  MATH  MathSciNet  Google Scholar 

  • Berthet, P., Inner rates of coverage of Strassen type sets by increments of the uniform empirical and quantile processes, Stochastic Process. Appl., 115 (2005), 493–537.

    Article  MATH  MathSciNet  Google Scholar 

  • Berthet, P. and Lifshits, M. A., Some exact rates in the functional law of the iterated logarithm, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 811–824.

    Article  MATH  MathSciNet  Google Scholar 

  • Bretagnolle, J. and Massart, P., Hungarian constructions from the non-asymptotic viewpoint, Ann. Probab., 17 (1989), 239–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Chung, K. L., On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc., 64 (1948), 205–233.

    MATH  MathSciNet  Google Scholar 

  • Csáki, E., A relation between Chung’s and Strassen’s law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete, 54 (1980), 287–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Csáki, E., A liminf result in Strassen’s law of the iterated logarithm, Limit theorems in probability and statistics, Coll. Math. Soc. János Bolyai 57, 1989, 83–93.

  • Csörgő, M. and Révész, P., A new method to prove Strassen type laws of invariance principle I & II, Z. Wahrsch. Verw. Gebiete, 31 (1975), 255–269.

    Article  Google Scholar 

  • Csörgő, M. and Révész, P., How big are the increments of a Wiener?, Ann. Probab., 7 (1979), 731–737.

    Article  MathSciNet  Google Scholar 

  • Csörgő, M. and Révész, P., Strong approximations in probability and statistics, Academic Press, New York, 1981.

    Google Scholar 

  • Csörgő, M. and Horváth, L., Weighted approximation in Probabilty and Statistics, Wiley, 1993.

  • Deheuvels, P., Functional Erdős-Rényi laws, Studia Sci. Math. Hungar., 26 (1991), 261–295.

    MATH  MathSciNet  Google Scholar 

  • Deheuvels, P., Functional laws of the iterated logarithm for small increments of empirical processes, Statist. Neerlandica, 50 (1996), 261–280.

    Article  MATH  MathSciNet  Google Scholar 

  • Deheuvels, P., Chung-type functional laws of the iterated logarithm for tail empirical processes, Ann. Inst. H. Poincaré Probab. Statist., 36 (2000), 583–616.

    Article  MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. and Mason, D. M., Functional laws of the iterated logarithm for the increments of empirical and quantile processes, Ann. Probab., 20 (1992), 1248–1287.

    Article  MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. and Lifshits, M. A., Probabilities of hitting of shifted small balls by a centered Poisson process, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 278, Veroyatn. i Stat., 4 (2001), 63–85; in Russian (translation: J. Math. Sci.118(2003), 5541–5554).

    Google Scholar 

  • Gorn, N. and Lifshits, M. A., Chung’s law and the Csáki function, J. Theoret. Probab., 12 (1999), 399–420.

    Article  MATH  MathSciNet  Google Scholar 

  • Grill, K., A liminf result in Strassen’s law of the iterated logarithm, Probab. Theory Related Fields, 89 (1991), 149–157.

    Article  MATH  MathSciNet  Google Scholar 

  • Komlós, J., Major, P. and Tusnády, G., An approximation of partial sums of independent r.v.’s, and the sample d.f. I., Z. Wahrsch. Verw. Gebiete, 32 (1975), 111–131.

    Article  MATH  Google Scholar 

  • Kuelbs, J., Li, W. V. and Talagrand, M., Liminf results for Gaussian samples and Chung’s functional LIL, Ann. Probab., 22 (1996), 1879–1903.

    Article  MathSciNet  Google Scholar 

  • Mason, D. M., A strong limit theorem for the oscillation modulus of the uniform empirical quantile process, Stochastic Process. Appl., 17 (1984), 127–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Mason, D. M., Shorack, G. R. and Wellner, J. A., Strong limit theorems for oscillation moduli of the uniform empirical process, Z. Wahrsch. Verw. Gebiete, 65 (1983), 83–97.

    Article  MATH  MathSciNet  Google Scholar 

  • Mason, D. M. and van Zwet, W. R., A refinement of the KMT inequality for the uniform empirical process, Ann. Probab., 15 (1987), 871–884.

    Article  MATH  MathSciNet  Google Scholar 

  • RÉVÉSZ, P., A generalization of Strassen’s functional law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete, 50 (1979), 257–264.

    Article  MATH  MathSciNet  Google Scholar 

  • Shmileva, E., Small ball probability for centered Poisson process of high intensity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 298 (2003a), to appear, in Russian.

  • Shmileva, E., Transforms of Poisson measures and its applications, Ph.D. of Saint-Petersburg State University, 2003b (in Russian).

  • Shorack, G. R. and Wellner, J. A., Empirical Processes with Applications to Statistics, Wiley, New York, 1986.

    MATH  Google Scholar 

  • Steinebach, J., Between invariance principles and Erdős-Rényi laws, Limit theorems in Probability and Statistics, Veszprém, Coll. Math. Soc. Jánios Bolyai 36, 1982, 981–1005.

  • Strassen, V., An invariance principle for the law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete, 3 (1964), 211–226.

    Article  MATH  MathSciNet  Google Scholar 

  • Stute, W., The oscillation behavior of empirical processes, Ann. Probab., 10 (1982a), 86–107.

    Article  MATH  MathSciNet  Google Scholar 

  • Stute, W., A law of the iterated logarithm for kernel density estimators, Ann. Probab., 10 (1982b), 411–422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Berthet.

Additional information

Dedicated to Endre Csáki and Pál Révész on the occasion of their 75th birthdays

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthet, P. Functional Chung laws for small increments of the empirical process and a lower bound in the strong invariance principle. Period Math Hung 61, 67–102 (2010). https://doi.org/10.1007/s10998-010-3067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-010-3067-2

Mathematics subject classification numbers

Key words and phrases