Skip to main content
Log in

Multiplicative character sums of Fermat quotients and pseudorandom sequences

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We prove a bound on sums of products of multiplicative characters of shifted Fermat quotients modulo p. From this bound we derive results on the pseudorandomness of sequences of modular discrete logarithms of Fermat quotients modulo p: bounds on the well-distribution measure, the correlation measure of order , and the linear complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aly and A. Winterhof, Boolean functions derived from Fermat quotients, Cryptogr. Commun., 3 (2011), 165–174.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Brandstätter and A. Winterhof, Linear complexity profile of binary sequences with small correlation measure, Period. Math. Hungar., 52 (2006), 1–8.

    Article  MATH  Google Scholar 

  3. Z. Chen, A. Ostafe and A. Winterhof, Structure of pseudorandom numbers derived from Fermat quotients, WAIFI 2010, Lecture Notes in Comput. Sci. 6087, 2010, 73–85.

  4. Z. Chen and A. Winterhof, Linear complexity profile of m-ary pseudorandom sequences with small correlation measure, Indag. Math. (N.S.), 20 (2009), 631–640.

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Chen and A. Winterhof, On the distribution of pseudorandom numbers and vectors derived from Euler-Fermat quotients, Int. J. Number Theory, 8 (2012), 631–641.

    Article  MATH  Google Scholar 

  6. R. Ernvall and T. Metsänkylä, On the p-divisibility of Fermat quotients, Math. Comp., 66 (1997), 1353–1365.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Granville, Some conjectures related to Fermat’s Last Theorem, Number Theory (Banff, 1988) de Gruyter, NY, 1990, 177–192.

  8. R. Heath-Brown, An estimate for Heilbronn’s exponential sum, Analytic Number Theory, Vol. 2, Progr. Math. 139, 1996, 451–463.

    MathSciNet  Google Scholar 

  9. H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications 53, American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  10. C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences I: Measures of pseudorandomness, the Legendre symbol, Acta Arith., 82 (1997), 365–377.

    MathSciNet  MATH  Google Scholar 

  11. C. Mauduit and A. Sárközy, On finite pseudorandom sequences of k symbols, Indag. Math. (N.S.), 13 (2002), 89–101.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Niederreiter, Linear complexity and related complexity measures for sequences, Progress in Cryptology—INDOCRYPT 2003, Lecture Notes in Comput. Sci. 2904, 2003, 1–17.

  13. A. Ostafe and I. E. Shparlinski, Pseudorandomness and dynamics of Fermat quotients, SIAM J. Discrete Math., 25 (2011), 50–71.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Shparlinski, Cryptographic Applications of Analytic Number Theory: Complexity Lower Bounds and Pseudorandomness, Birkhäuser, 2003.

  15. I. E. Shparlinski, Character sums with Fermat quotients, Q. J. Math., 62 (2011), 1031–1043.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Topuzoğlu and A. Winterhof, Pseudorandom sequences, Topics in geometry, coding theory and cryptography, Algebr. Appl. 6, Springer, Dordrecht, 2007, 135–166.

    Chapter  Google Scholar 

  17. A. Winterhof, Linear complexity and related complexity measures, Selected topics in information and coding theory, World Scientific, 2010, 3–40.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Gomez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez, D., Winterhof, A. Multiplicative character sums of Fermat quotients and pseudorandom sequences. Period Math Hung 64, 161–168 (2012). https://doi.org/10.1007/s10998-012-3747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-012-3747-1

Mathematics subject classification numbers

Key words and phrases

Navigation