Abstract
Using the discrete logarithm in [7] and [9] a large family of pseudorandom binary sequences was constructed. Here we extend this construction. An interesting feature of this extension is that in certain special cases we get sequences involving points on elliptic curves.
Similar content being viewed by others
References
R. Ahlswede, C. Mauduit and A. Sárközy, Large families of pseudorandom sequences of k symbols and their complexity, Part I, Part II, General Theory of Information Transfer and Combinatorics, Lecture Notes in Computer Science 4123, Springer Verlag, 293–325.
Z. Chen, Elliptic curve analogue of Legendre sequences, Monatsh. Math., 154 (2008), 1–10.
Z. Chen and S. Li, G. Xiao, Construction of pseudo-random binary sequences from elliptic curves by using discrete logarithm, Sequences and Their Applications — SETA 2006, Lecture Notes in Computer Science 4086, Springer, Berlin, 2006, 285–294.
Z. Chen, N. Zhang and G. Xiao, Pseudo-randomness of discrete-log sequences from elliptic curves, Information security and cryptology, Lecture Notes in Computer Science 4990, Springer, Berlin — Heidelberg, 2008, 231–245.
Z. Chen and G. Xiao, ’Good’ pseudor-random binary sequences from elliptic curves, http://eprint.iacr.org/2007/275.pdf.
L. Goubin, C. Mauduit and A. Sárközy, Construction of large families of pseudorandom binary sequences, J. Number Theory, 106 (2004), 56–69.
K. Gyarmati, A note to the paper On a fast version of a pseudorandom generator, Ann. Univ. Sci. Budapest. Eötvös, Sect. Math., 49 (2006), 87–93.
K. Gyarmati, On a family of pseudorandom binary sequences, Period. Math. Hungar., 49 (2004), 45–63.
K. Gyarmati, On a fast version of a pseudorandom generator, General theory of information transfer and combinatorics, Lecture Notes in Computer Science 4123, Springer, Berlin — Heidelberg, 2006, 326–342.
K. Gyarmati, A. Sárközy and A. Pethő, On linear recursion and pseudorandomness, Acta Arith., 118 (2005), 359–374.
C. Mauduit, J. Rivat and A. Sárközy, Construction of pseudorandom binary sequences using additive characters, Monatsh. Math., 141 (2004), 197–208.
C. Mauduit and A. Sárközy, On finite pseudorandom binary sequence I: Measures of pseudorandomness, the Legendre symbol, Acta Arith., 82 (1997), 365–377.
J. Rivat and A. Sárközy, Modular construction of pseudorandom binary sequences with composite moduli, Period. Math. Hungar., 51 (2005), 75–107.
A. Sárközy, A finite pseudorandom binary sequence, Studia Sci. Math. Hungar., 38 (2001), 377–384.
D. Shanks, Five number theoretic algorithms, Proc. of the Second Manitoba Conference on Numerical Mathematics, 1973, 51–70.
J.H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-Verlag, 1986 (expanded 2nd edition, 2009).
A. Tonelli, Bemerkung über die Auflösung quadratischer Congruenzen, Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen (1891), 344–346.
A. Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Act. Sci. Ind. 1041, Hermann, Paris, 1948.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Attila Pethő
Research partially supported by Hungarian NFSR, Grants No. K67676 and PD72264 and the János Bolyai Research Fellowship.
Rights and permissions
About this article
Cite this article
Gyarmati, K. Elliptic curve analogues of a pseudorandom generator. Period Math Hung 64, 119–130 (2012). https://doi.org/10.1007/s10998-012-4349-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-012-4349-7