Skip to main content
Log in

Erdős-Zaks all divisor sets

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let ℤ n be the finite cyclic group of order n and S ⊆ ℤ n . We examine the factorization properties of the Block Monoid B(ℤ n , S) when S is constructed using a method inspired by a 1990 paper of Erdős and Zaks. For such a set S, we develop an algorithm in Section 2 to produce and order a set {M i } n−1 i=1 which contains all the non-primary irreducible Blocks (or atoms) of B(ℤ n , S). This construction yields a weakly half-factorial Block Monoid (see [9]). After developing some basic properties of the set {M i } n−1 i=1 , we examine in Section 3 the connection between these irreducible blocks and the Erdős-Zaks notion of “splittable sets.” In particular, the Erdős-Zaks notion of “irreducible” does not match the classic notion of “irreducible” for the commutative cancellative monoids B(ℤ n , S). We close in Sections 4 and 5 with a detailed discussion of the special properties of the blocks M1 with an emphasis on the case where the exponents of M 1 take on extreme values. The work of Section 5 allows us to offer alternate arguments for two of the main results of the original paper by Erdős and Zaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Chapman and W. W. Smith, Factorization in Dedekind domains with finite class group, Isr. J. Math., 71 (1990), 65–95.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. T. Chapman and W. W. Smith, On the HFD, CHFD, and k-HFD properties in Dedekind domains, Commun. Algebra, 20 (1992), 1955–1987.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. T. Chapman, W. A. Schmid and W. W. Smith, Quasi-half-factorial subsets of abelian torsion groups, Houston J. Math., 35 (2009), 13–22.

    MathSciNet  MATH  Google Scholar 

  4. P. Erdős and A. Zaks, Reducible sums and splittable sets, J. Number Theory, 36 (1990), 89–94.

    Article  MathSciNet  Google Scholar 

  5. A. Geroldinger and F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, Vol. 278, Chapman & Hall/CRC, 2006.

  6. R. Gilmer, W. Heinzer and W. W. Smith, On the distribution of prime ideals within the ideal class group, Houston J. Math., 22 (1996), 51–59.

    MathSciNet  MATH  Google Scholar 

  7. A. P. Grams, The distribution of prime ideals of a Dedekind domain, Bull. Austral. Math. Soc., 11 (1974), 429–441.

    Article  MathSciNet  Google Scholar 

  8. A. Plagne and W. A. Schmid, On the maximal cardinality of half-factorial sets in cyclic groups, Math. Ann., 333 (2005), 759–785.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Radziejewski and W. A. Schmid, Weakly half-factorial sets in finite abelian groups, Forum Math., 19 (2007), 727–747.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Skula, On c-semigroups, Acta Arith., 31 (1976), 247–257.

    MathSciNet  MATH  Google Scholar 

  11. J. Śliwa, On the length of factorizations in algebraic number fields, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys., 23 (1975), 387–389.

    MATH  Google Scholar 

  12. J. ŚLIWA, Factorizations of distinct lengths in algebraic number fields, Acta Arith., 31 (1976), 399–417.

    MathSciNet  MATH  Google Scholar 

  13. J. ŚLIWA, Remarks on factorizations in algebraic number fields, Colloq. Math., 46 (1982), 123–130.

    MathSciNet  MATH  Google Scholar 

  14. A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc., 82 (1976), 721–723.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Zaks, Half-factorial domains, Isr. J. Math., 37 (1980), 281–302.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T. Chapman.

Additional information

Communicated by Attila Pethő

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, S.T., Smith, W.W. Erdős-Zaks all divisor sets. Period Math Hung 64, 227–246 (2012). https://doi.org/10.1007/s10998-012-5026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-012-5026-6

Mathematics subject classification numbers

Key words and phrases

Navigation