Skip to main content
Log in

An inequality for the function π(n)

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We prove that the inequality \(\pi ^2 \left( m \right) + \pi ^2 \left( n \right) \leqslant \tfrac{5} {4}\pi ^2 \left( {m + n} \right)\) holds for all integers m, n ≥ 2. The constant factor 5/4 is sharp. This complements a result of Panaitopol, who showed in 2001 that ½ π 2(m+ n) ≤ π 2(m) + π 2(n) is valid for all m, n ≥ 2. Here, as usual, π(n) denotes the number of primes not exceeding n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dusart, Autour de la fonction qui compte le nombre denombres premiers, Ph.D. thesis, University of Limoges, 1998.

    Google Scholar 

  2. R. Garunkštis, On some inequalities concerning π(x), Experiment. Math., 11 (2002), 297–301.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. M. Gordon and G. Rodemich, Dense admissible sets, Algorithmic number theory. (3rd international symposium, Portland, June 21–25, 1998), Lect. Notes Comput. Sci. 1423 (ed. J. P. Buhler), Springer, Berlin, 1998, 216–225.

    Chapter  Google Scholar 

  4. G. H. Hardy and J. E. Littlewood, Some problems of “partitio numerorum” III: On the expression of a number as a sum of primes, Acta Math., 44 (1923), 1–70.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Hensley and I. Richards, Primes in intervals, Acta Arith., 25 (1974), 375–391.

    MathSciNet  MATH  Google Scholar 

  6. H. Ishikawa, Über die Verteilung der Primzahlen, Sci. Rep. Tokyo Bunrika Daigaku (A), 2 (1934), 27–40.

    Google Scholar 

  7. D. S. Mitrinović, J. Sándor and B. Crstici, Handbook of Number Theory, Kluwer, Dordrecht, 1996.

    Google Scholar 

  8. L. Panaitopol, Some generalizations for a theorem by Landau, Math. Inequal. Appl., 4 (2001), 327–330.

    MathSciNet  MATH  Google Scholar 

  9. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64–94.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Alzer.

Additional information

Communicated by A. Sárközy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alzer, H. An inequality for the function π(n). Period Math Hung 67, 243–249 (2013). https://doi.org/10.1007/s10998-013-4674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-013-4674-5

Mathematics subject classification numbers

Key words and phrases

Navigation