Skip to main content
Log in

The Hopfian exponent of an abelian group

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

If \(G\) is a Hopfian abelian group then it is, in general, difficult to determine if direct sums of copies of \(G\) will remain Hopfian. We exhibit large classes of Hopfian groups such that every finite direct sum of copies of the group is Hopfian. We also show that for any integer \(n > 1\) there is a torsion-free Hopfian group \(G\) having the property that the direct sum of \(n\) copies of \(G\) is not Hopfian but the direct sum of any lesser number of copies is Hopfian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Beaumont, R.S. Pierce, Isomorphic direct summands of abelian groups. Math. Ann. 153, 21–37 (1964)

  2. P.M. Cohn, Some remarks on the invariant basis property. Topology 5, 215–228 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring. Proc. Lond. Math. Soc. 13, 687–710 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.L.S. Corner, Three examples on hopficity in torsion-free abelian groups. Acta Math. Acad. Sci. Hungar. 16, 303–310 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.L.S. Corner, R. Göbel, Prescribibg endomorphism algebras: a unified treatment. Proc. Lond. Math. Soc. 50, 447–479 (1985)

    Article  MATH  Google Scholar 

  6. L. Fuchs, Infinite Abelian Groups, vol. I (Academic Press, New York, 1970)

    MATH  Google Scholar 

  7. L. Fuchs, Infinite Abelian Groups, vol. II (Academic Press, New York, 1973)

    MATH  Google Scholar 

  8. B. Goldsmith, Anthony Leonard Southern Corner 1934–2006, in Models, Modules and Abelian Groups, ed. by R. Göbel, B. Goldsmith (Walter de Gruyter, Berlin, 2008), pp. 1–7

    Google Scholar 

  9. B. Goldsmith, K. Gong, A note on hopfian and co-hopfian abelian groups. Contemp. Math. 576, 129–136 (2012)

    Article  MathSciNet  Google Scholar 

  10. B. Goldsmith, L. Strüngmann, Torsion-free weakly transitive abelian group. Comm. Algebra 33, 1171–1191 (2005)

    Article  MathSciNet  Google Scholar 

  11. K.R. Goodearl, von Neumann Regular Rings (Pitman (Advanced Publishing Program), Boston, 1979)

    MATH  Google Scholar 

  12. K.R. Goodearl, Surjective endomorphisms of finitely generated modules. Comm. Algebra 15, 589–609 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Kaplansky, Modules over Dedekind rings and valuation rings. Trans. Am. Math. Soc. 72, 327–340 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Kaplansky, Infinite Abelian Groups (University of Michigan Press, Ann Arbour, 1954 and 1969)

  15. J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, revised ed., Graduate Studies in Mathematics, vol. 30 (American Mathematical Society, Providence, RI, 2001) (With the cooperation of L. W. Small)

  16. N.H. McCoy, Divisors of zero in matric rings. Bull. Am. Math. Soc 47, 166–172 (1941)

    Article  MathSciNet  Google Scholar 

  17. P.M. Neumann, Pathology in the Representation Theory of Infinite Soluble Groups, in Proceedings of ‘ Groups-Korea 1988’. Lecture Notes in Mathematics 1398 (Eds A.C. Kim and B.H. Neumann), pp. 124–139

  18. R.S. Pierce, Homomorphisms of Primary Abelian Groups, Topics in Abelian Groups (Scott Foresman, Chicago, 1963), pp. 215–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Goldsmith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldsmith, B., Vámos, P. The Hopfian exponent of an abelian group. Period Math Hung 69, 21–31 (2014). https://doi.org/10.1007/s10998-014-0038-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-014-0038-z

Keywords

Mathematics Subject Classification

Navigation