Skip to main content
Log in

Partition monoids and embeddings in 2-generator regular \(*\)-semigroups

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The partition monoid \(\mathcal P_n\) is known to be minimally \(4\)-generated (for \(n\ge 3\)). Modulo some small values of \(n\), we show that: (1) \(\mathcal P_n\) embeds in a \(3\)-generator subsemigroup of \(\mathcal P_{n+1}\); (2) \(\mathcal P_n\) does not embed in a \(2\)-generator subsemigroup of \(\mathcal P_{n+1}\); and (3) \(\mathcal P_n\) embeds in a \(2\)-generator subsemigroup of \(\mathcal P_{n+3}\). A consequence of (3) is that every finite semigroup embeds in a finite \(2\)-generator regular \(*\)-semigroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Unless otherwise stated, generation will always be within the variety of semigroups.

  2. The monoid \(\mathcal P_1\) is already \(2\)-generated. The author does not currently know whether \(\mathcal P_2\) (which is \(3\)-generated) embeds in a \(2\)-generator subsemigroup of \(\mathcal P_3\), but suspects it does not.

References

  1. J.M. André, V.H. Fernandes, J.D. Mitchell, Largest 2-generated subsemigroups of the symmetric inverse semigroup. Proc. Edinb. Math. Soc. (2) 50(3), 551–561 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Banach, Sur un Théorème de M. Sierpiński. Fund. Math. 25, 5–6 (1935)

    Google Scholar 

  3. I. Dolinka, J. East, A. Evangelou, D.G. FitzGerald, N. Ham, J. Hyde, N. Loughlin, Enumeration of idempotents in diagram semigroups and algebras. Preprint, 2014, arXiv:1408.2021

  4. J. East, Infinite partition monoids. Int. J. Algebra Comput. 24(4), 429–460 (2014)

  5. J. East, Generators and relations for partition monoids and algebras. J. Algebra 339, 1–26 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. J. East, R. Gray, Idempotent generators in finite partition monoids and algebras. Preprint, 2014, arXiv:1404.2359

  7. T. Evans, Embedding theorems for multiplicative systems and projective geometries. Proc. Am. Math. Soc. 3, 614–620 (1952)

    Article  MATH  Google Scholar 

  8. D.G. FitzGerald, A presentation for the monoid of uniform block permutations. Bull. Aust. Math. Soc. 68, 317–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. D.G. FitzGerald, J. Leech, Dual symmetric inverse semigroups and representation theory. J. Aust. Math. Soc. 64, 146–182 (1998)

    Article  MathSciNet  Google Scholar 

  10. D.G. FitzGerald, K.W. Lau, On the partition monoid and some related semigroups. Bull. Aust. Math. Soc. 83(2), 273–288 (2011)

    MATH  MathSciNet  Google Scholar 

  11. P. Higgins, J. Howie, J. Mitchell, N. Ruskuc, Countable versus uncountable rank in infinite semigroups of transformations and relations. Proc. Edinb. Math. Soc. 46(3), 531–544 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. P.M. Higgins, Techniques of Semigroup Theory (Oxford Science Publications, New York, 1992)

    MATH  Google Scholar 

  13. J. M. Howie, An Introduction to Semigroup Theory. L.M.S. Monographs, No. 7. (Academic Press, New York, 1976)

  14. J. Hyde, Y. Péresse, Sierpiński rank of the symmetric inverse semigroup. Preprint, 2012, arXiv:1211.6284

  15. T. Imaoka, \(*\)-Congruences on regular \(*\)-semigroups. Semigroup Forum 23(4), 321–326 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. D.B. McAlister, J.B. Stephen, A.S. Vernitski, Embedding \({\cal I}_{n}\) in a 2-generator inverse subsemigroup of \({\cal I}_{n+2}\). Proc. Edinb. Math. Soc. (2) 45(1), 1–4 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Nordahl, H. Scheiblich, Regular \(*\)-semigroups. Semigroup Forum 16(3), 369–377 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Sierpiński, Sue les susites infinies de fonctions Définies dans les ensembles quelconques. Fundam. Math. 24, 209–212 (1935)

    Google Scholar 

  19. S. Wilcox, Cellularity of diagram algebras as twisted semigroup algebras. J. Algebra 309(1), 10–31 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James East.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

East, J. Partition monoids and embeddings in 2-generator regular \(*\)-semigroups. Period Math Hung 69, 211–221 (2014). https://doi.org/10.1007/s10998-014-0055-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-014-0055-y

Keywords

Mathematics Subject Classification

Navigation