Skip to main content
Log in

Positive solutions of singular elliptic systems with multiple parameters and Caffarelli–Kohn–Nirenberg exponents

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

This paper is concerned with the existence of positive solutions for a class of quasilinear singular elliptic systems with Dirichlet boundary condition. By studying the competition between the Caffarelli–Kohn–Nirenberg exponents, the sign-changing potentials and the nonlinear terms, we establish an interval on the range of multiple parameters over which solutions exist in an appropriate weighted Sobolev space. The arguments rely on the method of weak sub- and super-solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Afrouzi, S.H. Rasouli, A remark on the existence of multiple solutions to a multiparameter nonlinear elliptic system. Nonlinear Anal. 71, 445–455 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Akhmediev, A. Ankiewicz, Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  3. J. Ali, R. Shivaji, Positive solutions for a class of \( p \)-Laplacian systems with multiple parameters. J. Math. Anal. Appl. 335, 1013–1019 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Ali, R. Shivaji, M. Ramaswamy, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects. Differ. Integral Equ. 19, 669–680 (2006)

    MATH  MathSciNet  Google Scholar 

  5. C.O. Alves, D.G. de Figueiredo, Nonvariational elliptic systems. Discrete Contin. Dyn. Syst. 8, 289–302 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Ambrosetti, J.G. Azorero, I. Peral, Existence and multiplicity results for some nonlinear elliptic equations. Rend. Mat. Appl. 7, 167–198 (2000)

    Google Scholar 

  7. C. Atkinson, K. El Kalli, Some boundary value problems for the Bingham model. J. Non Newton. Fluid Mech. 41, 339–363 (1992)

    Article  MATH  Google Scholar 

  8. H. Bueno, G. Ercole, W. Ferreira, A. Zumpano, Existence and multiplicity of positive solutions for the \(p\)-Laplacian with nonlocal coefficient. J. Math. Anal. Appl. 343, 151–158 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)

    MATH  MathSciNet  Google Scholar 

  10. A. Canada, P. Drábek, J.L. Gámez, Existence of positive solutions for some problems with nonlinear diffusion. Trans. Am. Math. Soc. 349, 4231–4249 (1997)

    Article  MATH  Google Scholar 

  11. F. Catrina, Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems. Nonlinear Anal. 39, 559–568 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. E.N. Dancer, Competing species systems with diffusion and large interaction. Rend. Sem. Mat. Fis. Milano 65, 23–33 (1995)

    Article  MathSciNet  Google Scholar 

  14. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1: Physical Origins and Classical Methods (Springer, Berlin, Heidelberg, New York, 1985)

    Google Scholar 

  15. P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem. Nonlinear Anal. 44, 189–204 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. J.F. Escobar, Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate. Commun. Pure Appl. Math. 43, 857–883 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Fang, S. Liu, Nontrivial solutions of superlinear \(p\)-Laplacian equations. J. Math. Anal. Appl. 351, 3601–3619 (2009)

    Article  MathSciNet  Google Scholar 

  18. R. Filippucci, P. Pucci, V. Rădulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions. Commun. Partial Differ. Equ. 33, 706–717 (2008)

    Article  MATH  Google Scholar 

  19. D.D. Hai, R. Shivaji, An existence result on positive solutions for a class of semi-linear elliptic systems. Proc. R. Soc. Edinb. Sect. A 134, 137–141 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. J.R. Graef, S. Heidarkhani, L. Kong, Multiple solutions for systems of multi-point boundary value problems. Opusc. Math. 33, 293–306 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. D.D. Hai, R. Shivaji, An existence result on positive solutions for a class of \(p\)-Laplacian systems. Nonlinear Anal. 56, 1007–1010 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. O.H. Miyagaki, R.S. Rodrigues, On positive solutions for a class of singular quasilinear elliptic systems. J. Math. Anal. Appl. 334, 818–833 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. M.K.V. Murthy, G. Stampacchia, Boundary value problems for some degenerate elliptic operators. Ann. Mat. Pura Appl. 80, 1–122 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Nagumo, Über die Differentialgleichung \(y^{\prime \prime } = f (x, y, y^{\prime })\). Proc. Phys. Math. Soc. Jpn. 19, 861–866 (1937)

    Google Scholar 

  25. H. Poincaré, Les fonctions fuchsiennes et l’équation \(\Delta u = e^{u}\). J. Math. Pures Appl. 4, 137–230 (1898)

    MATH  Google Scholar 

  26. S.H. Rasouli, On the existence of positive solution for class of nonlinear elliptic systems with multiple parameters and singular weights. Commun. Korean Math. Soc. 27, 557–564 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. V. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, vol. 6 (Hindawi Publishing Corporation, New York, 2008)

    Book  Google Scholar 

  28. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  29. B. Xuan, The eigenvalue problem for a singular quasilinear elliptic equation. Electron. J. Differ. Equ. 16, 1–11 (2004)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referee for the careful reading of the paper and numerous useful suggestions. V. Rădulescu acknowledges the support through Grant CNCS PCE-47/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu D. Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrouzi, G.A., Rădulescu, V.D. & Shakeri, S. Positive solutions of singular elliptic systems with multiple parameters and Caffarelli–Kohn–Nirenberg exponents. Period Math Hung 70, 145–152 (2015). https://doi.org/10.1007/s10998-014-0070-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-014-0070-z

Keywords

Mathematics Subject Classification

Navigation