Abstract
In this note, we consider the Erdős–Straus Diophantine equation
where n and c are positive integers with \(\gcd (n, c) = 1\). We provide a formula for the number f(n, c) of all positive integral solutions (x, y, z) of the equation. In 1948, Erdős and Straus conjectured that \(f(n,4) \ge 1,\) for all integers \(n \ge 2\). Here, we solve the conjecture for a special case of n.
Similar content being viewed by others
References
T. Browning, C. Elsholtz, The number of representations of rationals as a sum of unit fractions. Ill. J. Math. 55(2), 685–696 (2011)
Y.-G. Chen, C. Elsholtz, L.-L. Jiang, Egyptian fractions with restrictions. Acta Arith. 154, 109–123 (2012)
C. Elsholtz, Sums of \(k\) unit fractions. Trans. Am. Math. Soc. 353, 3209–3227 (2001)
C. Elsholtz, T. Tao, Counting the number of solutions to the Erdős–Straus equation on unit fractions. J. Aust. Math. Soc. 94, 50–105 (2013)
P. Erdős, Az \(1/x_1 + 1/x_2 + \cdots + 1/x_n = a/b\) egyenlet egész számú megoldásairól. Mat. Lapok 1, 192–210 (1950)
R. Guy, Unsolved Problems in Number Theory, 2nd edn. (Springer-Verlag, New York, 1994), pp. 158–166
C. Jia, A Note on Terence Tao’s Paper “On the Number of Solutions to \(4/p = 1/n_1 + 1/n_2 + 1/n_3\)”, preprint
C. Jia, The estimate for mean values on prime numbers relative to \(4/p = 1/n_1 + 1/n_2 + 1/n_3\). Sci. China Math. 55(3), 465–474 (2012)
D. Li, On the Equation \(4/n = 1/x + 1/y + 1/z\). J. Number Theory 13, 485–494 (1981)
M. Nakayama, On the Decomposition of a rational number into “Stammbrüche”. Tohoku Math. J. 46, 1–21 (1939)
M.R. Obláth, Sur l’ équation diophantienne \(4/n = 1/x_1 + 1/x_2 + 1/x_3\). Mathesis 59, 308–316 (1950)
J.W. Sander, On \(4/n = 1/x + 1/y + 1/z\) and Rosser’s sieve. Acta Arith. 59, 183–204 (1991)
J.W. Sander, On \(4/n = 1/x+1/y+1/z\) and Iwaniec’ Half Dimensional Sieve. J. Number Theory 46, 123–136 (1994)
A. Schinzel, Sur quelques propriétés des nombres \(3\) et \(4\), où \(n\) est un nombre impair. Mathesis 65, 219–222 (1956)
W. Sierpiński, Sur les décompositions de nombres rationelles en fractions primaires. Mathesis 65, 16–32 (1956)
S. Subburam, R. Thangadurai, On the Diophantine equation \(x^{3} + by + 1 -xyz = 0\). C.R. Math. Rep. Acad. Sci. Canada 36(1), 15–19 (2014)
R. Vaughan, On a problem of Erdős, Straus and Schinzel. Mathematika 17, 193–198 (1970)
C. Viola, On the Diophantine equations \(\prod _{0}^k x_i - \sum _{0}^k x_i = n\) and \(\sum _{0}^k \frac{1}{x_i} = \frac{a}{n}\). Acta Arith. 22, 339–352 (1973)
W. Webb, On \(4/n = 1/x + 1/y + 1/z\). Proc. Am. Math. Soc. 25, 578–584 (1970)
W. Webb, On a theorem of Rav concerning Egyptian fractions. Can. Math. Bull. 18(1), 155–156 (1975)
W. Webb, On the Diophantine equation \(k/n = a_1/x_1 +a_2/x_2 +a_3/x_3\). Časopis pro pěstováni matematiy, roč 101, 360–365 (1976)
K. Yamamoto, On the Diophantine Equation \(4/n = 1/x + 1/y + 1/z\). Mem. Fac. Sci. Kyushu Univ. Ser. A 19, 37–47 (1965)
X.Q. Yang, A note on \(4/n = 1/x + 1/y + 1/z\). Proc. Am. Math. Soc. 85, 496–498 (1982)
Acknowledgments
The authors express their gratitude to the referee for the constructive suggestions on an earlier draft of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Subburam, S., Togbé, A. A note on the Erdős–Straus conjecture. Period Math Hung 72, 43–49 (2016). https://doi.org/10.1007/s10998-015-0109-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-015-0109-9