Abstract
This paper concerns a short-update primal-dual interior-point method for linear optimization based on a new search direction. We apply a vector-valued function generated by a univariate function on the nonlinear equation of the system which defines the central path. The common way to obtain the equivalent form of the central path is using the square root function. In this paper we consider a new function formed by the difference of the identity map and the square root function. We apply Newton’s method in order to get the new directions. In spite of the fact that the analysis is more difficult in this case, we prove that the complexity of the algorithm is identical with the one of the best known methods for linear optimization.

Similar content being viewed by others
References
M. Achache, A weighted-path-following method for the linear complementarity problem. Studia Univ. Babeş-Bolyai. Ser. Informatica 49(1), 61–73 (2004)
M. Achache, A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25(1), 97–110 (2006)
M. Achache, Complexity analysis and numerical implementation of a short-step primal-dual algorithm for linear complementarity problems. Appl. Math. Comput. 216(7), 1889–1895 (2010)
K. Ahmadi, F. Hasani, B. Kheirfam, A full-Newton step infeasible interior-point algorithm based on Darvay directions for linear optimization. J. Math. Model. Algorithms Oper. Res. 13(2), 191–208 (2014)
W. Ai, S. Zhang, An O\((\sqrt{n} {L})\) iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP. SIAM J. Optim. 16(2), 400–417 (2005)
F. Alizadeh, D. Goldfarb, Second-order cone programming. Math. Program. 95(1), 3–51 (2003)
E. Andersen, J. Gondzio, Cs Mészáros, X. Xu, Implementation of interior point methods for large scale linear programs, in Inter. Point Methods Math. Program., ed. by T. Terlaky (Kluwer Academic Publishers, Dordrecht, 1996), pp. 189–252
S. Asadi, H. Mansouri, Polynomial interior-point algorithm for \({P}_*(\kappa )\) horizontal linear complementarity problems. Numer. Algorithms 63(2), 385–398 (2013)
S. Asadi, H. Mansouri, A new full-Newton step \({O}(n)\) infeasible interior-point algorithm for \({P}_*(\kappa )\)-horizontal linear complementarity problems. Comput. Sci. J. Moldova 22(1), 37–61 (2014)
Y.Q. Bai, L.M. Sun, Y. Chen, A new path-following interior-point algorithm for monotone semidefinite linear complementarity problems. Dyn. Contin. Discrete Impuls. Syst., Ser. B: Appl. Algorithms 17, 769–783 (2010)
Y.Q. Bai, F.Y. Wang, X.W. Luo, A polynomial-time interior-point algorithm for convex quadratic semidefinite optimization. RAIRO-Oper. Res. 44(3), 251–265 (2010)
R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity Problem. Computer Science and Scientific Computing (Academic Press, Boston, 1992)
Zs. Darvay, A new algorithm for solving self-dual linear optimization problems. Studia Univ. Babeş-Bolyai, Ser. Informatica 47(1), 15–26 (2002)
Zs. Darvay, A weighted-path-following method for linear optimization. Studia Univ. Babeş-Bolyai, Ser. Informatica 47(2), 3–12 (2002)
Zs. Darvay, New interior point algorithms in linear programming. Adv. Model. Optim. 5(1), 51–92 (2003)
Zs. Darvay, Á. Felméri, N. Forró, I.-M. Papp, P.-R. Takács, A new interior-point algorithm for solving linear optimization problems, in XVII. FMTU, ed. by E. Bitay (Transylvanian Museum Society, Cluj-Napoca, 2012), pp. 87–90. In Hungarian
Zs. Darvay, I.-M. Papp, P.-R. Takács, An infeasible full-Newton step algorithm for linear optimization with one centering step in major iteration. Studia Univ. Babeş-Bolyai, Ser. Informatica 59(1), 28–45 (2014)
J. Gondzio, T. Terlaky, A computational view of interior point methods for linear programming, in Advances in Linear and Integer Programming, ed. by J. Beasley (Oxford University Press, Oxford, GB, 1995)
M. Halická, Analytical properties of the central path at boundary point in linear programming. Math. Program. 84(2), 335–355 (1999)
M. Halická, Two simple proofs for analyticity of the central path in linear programming. Oper. Res. Lett. 28(1), 9–19 (2001)
T. Illés, Lineáris optimalizálás elmélete és belsőpontos algoritmusai. Operations Research Reports 2014-04, Eötvös Loránd University, Budapest, pp. 1–95 (2014)
T. Illés, M. Nagy, A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems. Eur. J. Oper. Res. 181(3), 1097–1111 (2007)
T. Illés, M. Nagy, T. Terlaky, EP theorem for dual linear complementarity problems. J. Optim. Theory Appl. 140(2), 233–238 (2009)
T. Illés, M. Nagy, T. Terlaky, Polynomial interior point algorithms for general linear complementarity problems. Alg. Oper. Res. 5(1), 1–12 (2010)
T. Illés, M. Nagy, T. Terlaky, A polynomial path-following interior point algorithm for general linear complementarity problems. J. Global. Optim. 47(3), 329–342 (2010)
T. Illés, T. Terlaky, Pivot versus interior point methods: Pros and Cons. Eur. J. Oper. Res. 140, 6–26 (2002)
N. Karmarkar, A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)
B. Kheirfam, A new infeasible interior-point method based on Darvay’s technique for symmetric optimization. Ann. Oper. Res. 211(1), 209–224 (2013)
B. Kheirfam, A predictor-corrector interior-point algorithm for \({P}_*(\kappa )\)-horizontal linear complementarity problem. Numer. Algorithms 66(2), 349–361 (2014)
E.D. Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications (Kluwer Academic Pubishers, Norwell, MA, 2002)
M. Kojima, N. Megiddo, T. Noma, A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, vol. 538, Lecture Notes in Computer Science (Springer, Berlin, 1991)
M. Kojima, N. Megiddo, Y. Ye, An interior point potential reduction algorithm for the linear complementarity problem. Math. Program. 54(1–3), 267–279 (1992)
M. Kojima, S. Mizuno, A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems. Math. Program. 44(1–3), 1–26 (1989)
I. Lustig, R. Marsten, D. Shanno, On implementing Mehrotra’s predictor-corrector interior-point method for linear programming. SIAM J. Optim. 2(3), 435–449 (1992)
I. Lustig, R. Marsten, D. Shanno, Computational experience with a globally convergent primal-dual predictor-corrector algorithm for linear programming. Math. Program. 66, 123–135 (1994)
H. Mansouri, M. Pirhaji, A polynomial interior-point algorithm for monotone linear complementarity problems. J. Optim. Theory Appl. 157(2), 451–461 (2013)
H. Mansouri, T. Siyavash, M. Zangiabadi, A path-following infeasible interior-point algorithm for semidefinite programming. Iran. J. Oper. Res. 3(1), 11–30 (2012)
S. Mehrotra, On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)
C. Mészáros, The efficient implementation of interior point methods for linear programming and their applications. Ph.D. thesis, Eötvös Loránd University of Sciences, Ph.D. School of Operations Research, Applied Mathematics and Statistics, Budapest (1996)
R.D.C. Monteiro, Y. Zhang, A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming. Math. Program. 81(3), 281–299 (1998)
Y. Nesterov, A. Nemirovskii, Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms, SIAM Studies in Applied Mathematics, vol. 13 (SIAM Publications, Philadelphia, 1994)
J. Peng, C. Roos, T. Terlaky, Self-Regular Functions: A New Paradigm for Primal-Dual Interior-Point Methods (Princeton University Press, Princeton, 2002)
F.A. Potra, The Mizuno-Todd-Ye algorithm in a larger neighborhood of the central path. Eur. J. Oper. Res. 143(2), 257–267 (2002)
F.A. Potra, R. Sheng, Predictor-corrector algorithm for solving \({P}_*(\kappa )\)-matrix LCP from arbitrary positive starting points. Math. Program. 76(1), 223–244 (1996)
F.A. Potra, R. Sheng, A large-step infeasible-interior-point method for the \({P}^*\)-Matrix LCP. SIAM J. Optim. 7(2), 318–335 (1997)
C. Roos, T. Terlaky, J-Ph Vial, Theory and Algorithms for Linear Optimization (Springer, New York, 2005)
S. Schmieta, F. Alizadeh, Extension of primal-dual interior point algorithms to symmetric cones. Math. Program., Ser. A 96(3), 409–438 (2003)
G. Sonnevend, An ”analytic center” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. in System Modelling and Optimization: Proceedings of the 12th IFIP-Conference held in Budapest, Hungary, September 1985, Lecture Notes in Control and Information Sciences. ed. by A Prékopa, J Szelezsán, B Strazicky, vol. 84 (Springer, Berlin, 1986) pp. 866–876
T. Terlaky, An easy way to teach interior-point methods. Eur. J. Oper. Res. 130(1), 1–19 (2001)
M.V.C Vieira, Jordan algebraic approach to symmetric optimization. Ph.D. thesis, Electrical Engineering, Mathematics and Computer Science, Delft University of Technology (2007)
G.Q. Wang, A new polynomial interior-point algorithm for the monotone linear complementarity problem over symmetric cones with full NT-steps. Asia-Pac. J. Oper. Res. 29(2), 1250,015 (2012)
G.Q. Wang, Y.Q. Bai, A new primal-dual path-following interior-point algorithm for semidefinite optimization. J. Math. Anal. Appl. 353(1), 339–349 (2009)
G.Q. Wang, Y.Q. Bai, A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov-Todd step. Appl. Math. Comput. 215(3), 1047–1061 (2009)
G.Q. Wang, Y.Q. Bai, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization. J. Optim. Theory Appl. 154(3), 966–985 (2012)
G.Q. Wang, Y.J. Yue, X.Z. Cai, Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem. Fuzzy Inf. Eng. 1(4), 435–445 (2009)
G.Q. Wang, Y.J. Yue, X.Z. Cai, A weighted-path-following method for monotone horizontal linear complementarity problem. in Fuzzy Information and Engineering, Advances in Soft Computing. ed. by B.y. Cao, C.y. Zhang, T.f. Li, vol. 54, (Springer, Berlin, 2009) pp. 479–487
S. Wright, Primal-Dual Interior-Point Methods (SIAM, Philadelphia, 1997)
Y. Ye, Interior Point Algorithms. Theory and Analysis (Wiley, Chichester, 1997)
Y. Ye, A path to the Arrow-Debreu competitive market equilibrium. Math. Program. 111(1–2), 315–348 (2008)
Y. Ye, M. Todd, S. Mizuno, An \(O(\sqrt{n}L)\)-iteration homogeneous and self-dual linear programming algorithm. Math. Oper. Res. 19, 53–67 (1994)
Acknowledgments
The authors gratefully acknowledge the support of the Edutus College (Collegium Talentum) and the Transylvanian Museum Society. The authors are thankful to the editor and the reviewer for their helpful suggestions that improved the presentation of this paper. We also thank Ágnes Felméri and Nóra Forró for their useful comments on the paper. The work of the third author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0024.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Darvay, Z., Papp, IM. & Takács, PR. Complexity analysis of a full-Newton step interior-point method for linear optimization. Period Math Hung 73, 27–42 (2016). https://doi.org/10.1007/s10998-016-0119-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-016-0119-2