Skip to main content
Log in

On the Lucas sequence equations \(V_{n}(P,1)=wkx^{2},\) \(w\in \left\{ 5,7\right\} \)

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let P be an odd integer and \((V_{n})\) denote the generalized Lucas sequence defined by \(V_{0}=2,\) \(V_{1}=P,\) and \(V_{n+1}=PV_{n}+V_{n-1}\) for \(n\ge 1.\) In this study, we solve the equations \(V_{n}=5kx^{2},\) \(V_{n}=7kx^{2},\) \(V_{n}=5kx^{2}\pm 1,\) and \(V_{n}=7kx^{2}\pm 1\) when k|P with \(k>1.\) Moreover, applying some of the results, we obtain complete solutions to the equations \(V_{n}=\sigma x^{2},\) \(\sigma \in \left\{ 15,21,35\right\} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: The user language, J. Symb. Comput. 24 (3–4): 235–265, 1997. (See also http://magma.maths.usyd.edu.au/magma/)

  2. J.H. Cohn, Square Fibonacci numbers, etc. Fibonacci Q. 2(2), 109–113 (1964)

    MathSciNet  MATH  Google Scholar 

  3. J.H.E. Cohn, Squares in some recurrent sequences. Pac. J. Math. 41, 631–646 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Demirtürk, R. Keskin, Integer solutions of some Diophantine equations via Fibonacci and Lucas numbers. J. Integer Seq. 12, 1–14 (2009)

    MathSciNet  MATH  Google Scholar 

  5. D. Kalman, R. Mena, The Fibonacci numbers-exposed. Math. Mag. 76, 167–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Karaatlı, R.Keskin, On The Lucas sequence equations \(V_{n}=7\square \) and \(V_{n}=7V_{m}\square .\) Bull. Malaysian Math. Sci. Soc. (accepted)

  7. O. Karaatlı, R.Keskin, Generalized Lucas numbers of the form \(5kx^{2}\) and \(7kx^{2}.\) B. Korean Math. Soc. 52(5), 1467–1480 (2015)

  8. O. Karaatlı, R.Keskin, On the equations \( U_{n}=5\square \) and \(V_{n}=5\square .\) Miskolc Math. Notes 16(2), 925–938 (2015)

  9. R. Keskin, O. Karaatlı, Generalized Fibonacci and Lucas numbers of the form \(5x^{2},\) Int. J. Number Theory 11(3), 931–944 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Keskin, Generalized Fibonacci and Lucas numbers of the form \(wx^{2}\) and \(wx^{2}\pm 1,\) B. Korean Math. Soc. 51(4), 1041–1054 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods. Math. Comput. 61, 365–372 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Rabinowitz, in Algorithmic manipulation of Fibonacci identities. Applications of Fibonacci Numbers, vol 6 (1996), pp. 389–408

  13. P. Ribenboim, My Numbers, My Friends (Springer, New York, 2000)

    MATH  Google Scholar 

  14. P. Ribenboim, W.L. McDaniel, The square terms in Lucas sequences. J. Number Theory 58, 104–123 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Ribenboim, W. L. McDaniel, On Lucas Sequence Terms of the Form \(kx^{2},\) Number Theory: Proceedings of the Turku Symposium on Number Theory in Memory of Kustaa Inkeri (Turku, 1999) (Walter de Gruyter, Berlin, New York, 2001), pp. 293–303

  16. Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers. Hacet. J. Math. Stat. 42(3), 211–222 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Z. Şiar, R. Keskin, The square terms in generalized Fibonacci sequence. Mathematika 60, 85–100 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olcay Karaatlı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaatlı, O. On the Lucas sequence equations \(V_{n}(P,1)=wkx^{2},\) \(w\in \left\{ 5,7\right\} \) . Period Math Hung 73, 73–82 (2016). https://doi.org/10.1007/s10998-016-0130-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-016-0130-7

Keywords

Mathematics Subject Classification

Navigation