Abstract
Let P be an odd integer and \((V_{n})\) denote the generalized Lucas sequence defined by \(V_{0}=2,\) \(V_{1}=P,\) and \(V_{n+1}=PV_{n}+V_{n-1}\) for \(n\ge 1.\) In this study, we solve the equations \(V_{n}=5kx^{2},\) \(V_{n}=7kx^{2},\) \(V_{n}=5kx^{2}\pm 1,\) and \(V_{n}=7kx^{2}\pm 1\) when k|P with \(k>1.\) Moreover, applying some of the results, we obtain complete solutions to the equations \(V_{n}=\sigma x^{2},\) \(\sigma \in \left\{ 15,21,35\right\} \).
Similar content being viewed by others
References
W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: The user language, J. Symb. Comput. 24 (3–4): 235–265, 1997. (See also http://magma.maths.usyd.edu.au/magma/)
J.H. Cohn, Square Fibonacci numbers, etc. Fibonacci Q. 2(2), 109–113 (1964)
J.H.E. Cohn, Squares in some recurrent sequences. Pac. J. Math. 41, 631–646 (1972)
B. Demirtürk, R. Keskin, Integer solutions of some Diophantine equations via Fibonacci and Lucas numbers. J. Integer Seq. 12, 1–14 (2009)
D. Kalman, R. Mena, The Fibonacci numbers-exposed. Math. Mag. 76, 167–181 (2003)
O. Karaatlı, R.Keskin, On The Lucas sequence equations \(V_{n}=7\square \) and \(V_{n}=7V_{m}\square .\) Bull. Malaysian Math. Sci. Soc. (accepted)
O. Karaatlı, R.Keskin, Generalized Lucas numbers of the form \(5kx^{2}\) and \(7kx^{2}.\) B. Korean Math. Soc. 52(5), 1467–1480 (2015)
O. Karaatlı, R.Keskin, On the equations \( U_{n}=5\square \) and \(V_{n}=5\square .\) Miskolc Math. Notes 16(2), 925–938 (2015)
R. Keskin, O. Karaatlı, Generalized Fibonacci and Lucas numbers of the form \(5x^{2},\) Int. J. Number Theory 11(3), 931–944 (2015)
R. Keskin, Generalized Fibonacci and Lucas numbers of the form \(wx^{2}\) and \(wx^{2}\pm 1,\) B. Korean Math. Soc. 51(4), 1041–1054 (2014)
J.B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods. Math. Comput. 61, 365–372 (1993)
S. Rabinowitz, in Algorithmic manipulation of Fibonacci identities. Applications of Fibonacci Numbers, vol 6 (1996), pp. 389–408
P. Ribenboim, My Numbers, My Friends (Springer, New York, 2000)
P. Ribenboim, W.L. McDaniel, The square terms in Lucas sequences. J. Number Theory 58, 104–123 (1996)
P. Ribenboim, W. L. McDaniel, On Lucas Sequence Terms of the Form \(kx^{2},\) Number Theory: Proceedings of the Turku Symposium on Number Theory in Memory of Kustaa Inkeri (Turku, 1999) (Walter de Gruyter, Berlin, New York, 2001), pp. 293–303
Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers. Hacet. J. Math. Stat. 42(3), 211–222 (2013)
Z. Şiar, R. Keskin, The square terms in generalized Fibonacci sequence. Mathematika 60, 85–100 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karaatlı, O. On the Lucas sequence equations \(V_{n}(P,1)=wkx^{2},\) \(w\in \left\{ 5,7\right\} \) . Period Math Hung 73, 73–82 (2016). https://doi.org/10.1007/s10998-016-0130-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-016-0130-7