Skip to main content
Log in

Generalized Fibonacci numbers of the form \(wx^{2}+1\)

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(P\ge 3\) be an integer and let \((U_{n})\) and \((V_{n})\) denote generalized Fibonacci and Lucas sequences defined by \(U_{0}=0,U_{1}=1\); \( V_{0}=2,V_{1}=P,\) and \(U_{n+1}=PU_{n}-U_{n-1}\), \(V_{n+1}=PV_{n}-V_{n-1}\) for \(n\ge 1.\) In this study, when P is odd, we solve the equation \( U_{n}=wx^{2}+1\) for \(w=1,2,3,5,6,7,10.\) After then, we solve some Diophantine equations utilizing solutions of these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kalman, R. Mena, The Fibonacci numbers-exposed. Math. Mag. 76, 167–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. J.B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods. Math. Comput. 61, 365–372 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Rabinowitz, Algorithmic manipulation of Fibonacci identities. Appl Fibonacci Number 6, 389–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Ribenboim, My Numbers, My Friends (Springer, New York, 2000)

    MATH  Google Scholar 

  5. P. Ribenboim, W.L. McDaniel, The square terms in Lucas sequences. J. Number Theory 58, 104–123 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Şiar, R. Keskin, The square terms in generalized Fibonacci sequence. Mathematika 60, 85–100 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Keskin, O. Karaatlı, Generalized Fibonacci and Lucas numbers of the form \(5x^{2}\). Int. J. Number. Theory 11(3), 931–944 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.A. Alekseyev, S. Tengely, On integral points on biquadratic curves and near-multiples of squares in Lucas sequences. J. Integer Seq. 17, no. 6, Article ID 14.6.6, (2014)

  9. R. Keskin, Generalized Fibonacci and Lucas numbers of the form \(wx^{2}\) and \(wx^{2}\pm 1\). Bull. Korean Math. Soc. 51, 1041–1054 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Karaatlı, R. Keskin, Generalized Lucas Numbers of the form \(5kx^{2}\) and \(7kx^{2}\). Bull. Korean Math. Soc. 52(5), 1467–1480 (2015)

  11. M.A. Bennett, S. Dahmen, M. Mignotte, S. Siksek, Shifted powers in binary recurrence sequences. Math. Proc. Camb. Philos. Soc. 158(2), 305–329 (2015)

    Article  MathSciNet  Google Scholar 

  12. Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Fibonacci numbers at most one away from a perfect power. Elem. Math. 63(2), 65–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Almost powers in the Lucas sequence. J. Théor. Nombres Bordx. 20(3), 555–600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers. Ann. Math. 163(3), 969–1018 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.H.E. Cohn, Squares in some recurrent sequences. Pac. J. Math. 41, 631–646 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Ribenboim, W. L. McDaniel, On Lucas sequence terms of the form \(kx^{2},\) number theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 293–303 (2001)

  17. R.T. Bumby, The Diophantine equation \(3x^{4}-2y^{2}=1\). Math. Scand. 21, 144–148 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Keskin and Z. Şiar, Positive integer solutions of some Diophantine equations in terms of integer sequences (submitted)

  19. J.P. Jones, Representation of solutions of Pell equations using Lucas sequences. Acta Acad. Paedagog. Agriensis Sect. Mat. 30, 75–86 (2003)

    MathSciNet  MATH  Google Scholar 

  20. R. Keskin, Solutions of some quadratic Diophantine equations. Comput. Math. Appl. 60, 2225–2230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. W.L. McDaniel, Diophantine representation of Lucas sequences. Fibonacci Quart. 33, 58–63 (1995)

    MathSciNet  MATH  Google Scholar 

  22. R. Melham, Conics which characterize certain Lucas sequences. Fibonacci Quart. 35, 248–251 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Z. Şiar, R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers. Hacet. J. Math. Stat. 42(3), 211–222 (2013)

    MathSciNet  MATH  Google Scholar 

  24. W.L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences. Fibonacci Quart. 29, 24–30 (1991)

    MathSciNet  MATH  Google Scholar 

  25. W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system. I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refik Keskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, R., Öğüt, Ü. Generalized Fibonacci numbers of the form \(wx^{2}+1\) . Period Math Hung 73, 165–178 (2016). https://doi.org/10.1007/s10998-016-0133-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-016-0133-4

Keywords

Mathematics Subject Classifications

Navigation