Skip to main content
Log in

Robustness of exponential behavior in Banach spaces

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We consider a generalization of the notion of exponential dichotomy in which the exponential behaviors on \(\mathbb {R}^+\) and \(\mathbb {R}^-\) need not agree at the origin, although they still satisfy a certain compatibility condition. A nontrivial example is the change from stable to unstable behavior in a given direction, such as in a saddle-node bifurcation. Our main aim is to show that this exponential behavior is robust, in the sense that it persists under sufficiently small linear perturbations. We emphasize that we consider arbitrary evolution families in Banach spaces. This includes any differentiable evolution family obtained from a nonautonomous linear equation \(x^{\prime } =A(t) x\) possibly with A(t) unbounded, although in general we do not require the evolution families to be differentiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Barreira, Ya. Pesin, Nonuniform Hyperbolicity Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  2. L. Barreira, C. Valls, Robustness of nonuniform exponential dichotomies in Banach spaces. J. Differ. Equ. 244, 2407–2447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Barreira, C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Mathematics (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  4. M. Brin, J. Pesin, Partially hyperbolic dynamical systems. Math. USSR Izv. 8, 177–218 (1974)

    Article  MATH  Google Scholar 

  5. W. Coppel, Dichotomies and reducibility. J. Differ. Equ. 3, 500–521 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics (Springer, Berlin, 1978)

    Book  MATH  Google Scholar 

  7. J. Dalec’kiĭ, M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs (American Mathematical Society, Providence, 1974)

    Google Scholar 

  8. A. Ducrot, P. Magal, O. Seydi, Persistence of exponential trichotomy for linear operators: a Lyapunov–Perron approach. J. Dyn. Differ. Equ. 28, 93–126 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Elaydi, O. Hájek, Exponential trichotomy of differential systems. J. Math. Anal. Appl. 129, 362–374 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs (American Mathematical Society, Providence, 1988)

    Google Scholar 

  11. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics (Springer, Berlin, 1981)

    Book  MATH  Google Scholar 

  12. E. Hille, R. Phillips, Functional Analysis and Semi-Groups (American Mathematical Society Colloquium Publications, Providence, 1957)

    MATH  Google Scholar 

  13. J. Hong, Exponential trichotomies and Fredholm operators. Ann. Differ. Equ. 9, 37–43 (1993)

    MathSciNet  MATH  Google Scholar 

  14. A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Lupa, M. Megan, Generalized exponential trichotomies for abstract evolution operators on the real line, J. Funct. Spaces Appl. Art. ID 409049, p. 8 (2013)

  16. J. Massera, J. Schäffer, Linear differential equations and functional analysis. I. Ann. Math. 67, 517–573 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Massera, J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics (Academic Press, New York, 1966)

    MATH  Google Scholar 

  18. O. Méndez, L.H. Popescu, On admissible perturbations for exponential dichotomy. J. Math. Anal. Appl. 337, 425–430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Perron, Die stabilitätsfrage bei differentialgleichungen. Math. Z. 32, 703–728 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Pliss, A reduction principle in the theory of stability of motion. Izv. Akad. Nauk SSSR Ser. Mat. 28, 1297–1324 (1964)

    MathSciNet  MATH  Google Scholar 

  21. V. Pliss, G. Sell, Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dyn. Differ. Equ. 11, 471–513 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. L.H. Popescu, Exponential dichotomy roughness on Banach spaces. J. Math. Anal. Appl. 314, 436–454 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. L.H. Popescu, Exponential dichotomy roughness and structural stability for evolution families without bounded growth and decay. Nonlinear Anal. 71, 935–947 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Sacker, G. Sell, Existence of dichotomies and invariant splittings for linear differential systems III. J. Differ. Equ. 22, 497–522 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Sell, Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  26. A. Vanderbauwhede, Centre Manifolds, Normal Forms and Elementary Bifurcations, Dynamics Reported (Wiley, Chichester, 1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

L. B. and C. V. were supported by FCT/Portugal through UID/MAT/04459/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Barreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreira, L., Popescu, L.H. & Valls, C. Robustness of exponential behavior in Banach spaces. Period Math Hung 75, 80–95 (2017). https://doi.org/10.1007/s10998-016-0166-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-016-0166-8

Keywords

Mathematics Subject Classification