Skip to main content
Log in

On the Diophantine equation \(X^{2N}+2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\)

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We prove that for each prime p, positive integer \(\alpha \), and non-negative integers \(\beta \) and \(\gamma \), the Diophantine equation \(X^{2N} + 2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\) has no solution with N, X, \(Z\in \mathbb {Z}^+\), \(N > 1\), and \(\gcd (X,Z) = 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Arif, F.S. Abu Muriefah, On the Diophantine equation \(x^2 + 2^k = y^n\). II. Arab J. Math. Sci. 7(1), 67–71 (2001)

    MATH  Google Scholar 

  2. A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. R. Soc. Lond. Ser. A 263, 173–191 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.A. Bennett, The equation \(x^{2n}+y^{2n}=z^5\). J. Théor. Nombres Bordeaux 18(2), 315–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.A. Bennett, I. Chen, Multi-Frey \(\mathbb{Q}\)-curves and the Diophantine equation \(a^2 + b^6 = c^n\). Algebra Number Theory 6(4), 707–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.A. Bennett, I. Chen, S.R. Dahmen, S. Yazdani, Generalized Fermat equations: a miscellany. Int. J. Number Theory 11, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.A. Bennett, C.M. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Can. J. Math. 56(1), 23–54 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Bruin, Chabauty methods using elliptic curves. J. Reine Angew. Math. 562, 27–49 (2003)

    MathSciNet  MATH  Google Scholar 

  9. I.N. Cangül, M. Demirci, F. Luca, Á. Pintér, G. Soydan, On the Diophantine equation \(x^2 + 2^a\cdot 11^b = y^n\). Fibonacci Q. 48(1), 39–46 (2010)

    MATH  Google Scholar 

  10. I. Chen, On the equation \(a^2 + b^{2p} = c^5\). Acta Arith. 143(4), 345–375 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Cohen, Number Theory, Vol. II: Analytic and Modern Tools, GTM, vol. 240 (Springer, New York, 2007)

    Google Scholar 

  12. H. Godinho, D. Marques, A. Togbé, On the Diophantine equation \(x^2 + 2^\alpha 5^\beta 17^\gamma = y^n\). Commun. Math. 20(2), 81–88 (2012)

    MathSciNet  MATH  Google Scholar 

  13. E. Goins, F. Luca, A. Togbé, On the Diophantine equation \(x^2 + 2^\alpha 5^\beta 13^\gamma = y^n\). Lecture Notes in Computer Science, 5011, A. J. van der Poorten and A. Stein (eds.) Springer, Berlin (2008)

  14. M.H. Le, On Cohn’s conjecture concerning the Diophantine equation \(x^2 + 2^m = y^n\). Arch. Math. (Basel) 78(1), 26–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Ljunggren, On the Diophantine equation \(x^2+p^2=y^n\). Norske Vid. Selsk. Forh. Trondhjem 16(8), 27–30 (1943)

    MathSciNet  MATH  Google Scholar 

  16. F. Luca, On the equation \(x^2 + 2^a\cdot 3^b = y^n\). Int. J. Math. Math. Sci. 29(4), 239–244 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Luca, A. Togbé, On the Diophantine equation \(x^2 + 2^a\cdot 5^b = y^n\). Int. J. Number Theory 4(6), 973–979 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Poonen, Some Diophantine equations of the form \(x^n + y^n = z^m\). Acta Arith. 86, 193–205 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Soydan, M. Ulas, H.L. Zhu, On the Diophantine equation \(x^2 + 2^a \cdot 19^b = y^n\). Indian J. Pure Appl. Math. 43, 251–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Thue, Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135, 284–305 (1909)

    MathSciNet  MATH  Google Scholar 

  22. N. Tzanakis, B.M.M. de Weger, On the practical solution of the Thue equation. J. Number Theory 31(2), 99–132 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. H.L. Zhu, M.H. Le, G. Soydan, A. Togbé, On the exponential Diophantine equation \(x^2 + 2^a p^b = y^n\). Period. Math. Hungar. 70(2), 233–247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gary Walsh for noting a serious (and now corrected) error introduced in earlier editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva G. Goedhart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goedhart, E.G., Grundman, H.G. On the Diophantine equation \(X^{2N}+2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\) . Period Math Hung 75, 196–200 (2017). https://doi.org/10.1007/s10998-017-0185-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-017-0185-0

Keywords

Navigation