Abstract
We prove that for each prime p, positive integer \(\alpha \), and non-negative integers \(\beta \) and \(\gamma \), the Diophantine equation \(X^{2N} + 2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\) has no solution with N, X, \(Z\in \mathbb {Z}^+\), \(N > 1\), and \(\gcd (X,Z) = 1\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
S.A. Arif, F.S. Abu Muriefah, On the Diophantine equation \(x^2 + 2^k = y^n\). II. Arab J. Math. Sci. 7(1), 67–71 (2001)
A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. R. Soc. Lond. Ser. A 263, 173–191 (1968)
M.A. Bennett, The equation \(x^{2n}+y^{2n}=z^5\). J. Théor. Nombres Bordeaux 18(2), 315–321 (2006)
M.A. Bennett, I. Chen, Multi-Frey \(\mathbb{Q}\)-curves and the Diophantine equation \(a^2 + b^6 = c^n\). Algebra Number Theory 6(4), 707–730 (2012)
M.A. Bennett, I. Chen, S.R. Dahmen, S. Yazdani, Generalized Fermat equations: a miscellany. Int. J. Number Theory 11, 1–28 (2015)
M.A. Bennett, C.M. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Can. J. Math. 56(1), 23–54 (2004)
W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)
N. Bruin, Chabauty methods using elliptic curves. J. Reine Angew. Math. 562, 27–49 (2003)
I.N. Cangül, M. Demirci, F. Luca, Á. Pintér, G. Soydan, On the Diophantine equation \(x^2 + 2^a\cdot 11^b = y^n\). Fibonacci Q. 48(1), 39–46 (2010)
I. Chen, On the equation \(a^2 + b^{2p} = c^5\). Acta Arith. 143(4), 345–375 (2010)
H. Cohen, Number Theory, Vol. II: Analytic and Modern Tools, GTM, vol. 240 (Springer, New York, 2007)
H. Godinho, D. Marques, A. Togbé, On the Diophantine equation \(x^2 + 2^\alpha 5^\beta 17^\gamma = y^n\). Commun. Math. 20(2), 81–88 (2012)
E. Goins, F. Luca, A. Togbé, On the Diophantine equation \(x^2 + 2^\alpha 5^\beta 13^\gamma = y^n\). Lecture Notes in Computer Science, 5011, A. J. van der Poorten and A. Stein (eds.) Springer, Berlin (2008)
M.H. Le, On Cohn’s conjecture concerning the Diophantine equation \(x^2 + 2^m = y^n\). Arch. Math. (Basel) 78(1), 26–35 (2002)
W. Ljunggren, On the Diophantine equation \(x^2+p^2=y^n\). Norske Vid. Selsk. Forh. Trondhjem 16(8), 27–30 (1943)
F. Luca, On the equation \(x^2 + 2^a\cdot 3^b = y^n\). Int. J. Math. Math. Sci. 29(4), 239–244 (2002)
F. Luca, A. Togbé, On the Diophantine equation \(x^2 + 2^a\cdot 5^b = y^n\). Int. J. Number Theory 4(6), 973–979 (2008)
B. Poonen, Some Diophantine equations of the form \(x^n + y^n = z^m\). Acta Arith. 86, 193–205 (1998)
G. Soydan, M. Ulas, H.L. Zhu, On the Diophantine equation \(x^2 + 2^a \cdot 19^b = y^n\). Indian J. Pure Appl. Math. 43, 251–261 (2012)
R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)
A. Thue, Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135, 284–305 (1909)
N. Tzanakis, B.M.M. de Weger, On the practical solution of the Thue equation. J. Number Theory 31(2), 99–132 (1989)
A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)
H.L. Zhu, M.H. Le, G. Soydan, A. Togbé, On the exponential Diophantine equation \(x^2 + 2^a p^b = y^n\). Period. Math. Hungar. 70(2), 233–247 (2015)
Acknowledgements
The authors would like to thank Gary Walsh for noting a serious (and now corrected) error introduced in earlier editing.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Goedhart, E.G., Grundman, H.G. On the Diophantine equation \(X^{2N}+2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\) . Period Math Hung 75, 196–200 (2017). https://doi.org/10.1007/s10998-017-0185-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-017-0185-0
Keywords
Profiles
- Eva G. Goedhart View author profile