Skip to main content
Log in

Complementary Euler numbers

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

For an integer k, define poly-Euler numbers of the second kind \(\widehat{E}_n^{(k)}\) (\(n=0,1,\ldots \)) by

$$\begin{aligned} \frac{{\mathrm{Li}}_k(1-e^{-4 t})}{4\sinh t}=\sum _{n=0}^\infty \widehat{E}_n^{(k)}\frac{t^n}{n!}. \end{aligned}$$

When \(k=1\), \(\widehat{E}_n=\widehat{E}_n^{(1)}\) are Euler numbers of the second kind or complimentary Euler numbers defined by

$$\begin{aligned} \frac{t}{\sinh t}=\sum _{n=0}^\infty \widehat{E}_n\frac{t^n}{n!}. \end{aligned}$$

Euler numbers of the second kind were introduced as special cases of hypergeometric Euler numbers of the second kind in Komatsu and Zhu (Hypergeometric Euler numbers, 2016, arXiv:1612.06210), so that they would supplement hypergeometric Euler numbers. In this paper, we study generalized Euler numbers of the second kind and give several properties and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Arakawa, M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J. 153, 189–209 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Kaneko, Poly-Bernoulli numbers. J. Theor. Nombres Bordx. 9, 221–228 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Komatsu, Poly-Cauchy numbers. Kyushu J. Math. 67, 143–153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Komatsu, H. Zhu, Hypergeometric Euler numbers (2016). arXiv:1612.06210

  5. S. Koumandos, H. Laurberg Pedersen, Turán type inequalities for the partial sums of the generating functions of Bernoulli and Euler numbers. Math. Nachr. 285, 2129–2156 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. N.J.A. Sloane, The on-line encyclopedia of integer sequences. oeis.org. (2017)

  7. Y. Ohno, Y. Sasaki, On the parity of poly-Euler numbers. RIMS Kokyuroku Bessatsu B32, 271–278 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Y. Ohno, Y. Sasaki, Periodicity on poly-Euler numbers and Vandiver type congruence for Euler numbers. RIMS Kokyuroku Bessatsu B44, 205–211 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Y. Ohno, Y. Sasaki, On poly-Euler numbers. J. Aust. Math. Soc. (2016). doi:10.1017/S1446788716000495

    MATH  Google Scholar 

  10. Y. Sasaki, On generalized poly-Bernoulli numbers and related \(L\)-functions. J. Number Theory 132, 156–170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referee for careful reading of the manuscript and giving the hint to Theorem 4.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Komatsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, T. Complementary Euler numbers. Period Math Hung 75, 302–314 (2017). https://doi.org/10.1007/s10998-017-0199-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-017-0199-7

Keywords

Navigation