Skip to main content
Log in

New asymmetric generalizations of the Filbert and Lilbert matrices

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Two new asymmetric generalizations of the Filbert and Lilbert matrices constructed by the products of two Fibonacci and Lucas numbers are considered, with additional parameter settings. Explicit formulæ are derived for their LU-decompositions and inverses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Anderson, C. Berg, Quantum Hilbert matrices and orthogonal polynomials. J. Comput. Appl. Math. 223, 723–729 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Edelman, G. Strang, Pascal matrices. Am. Math. Mon. 111, 189–197 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Carlitz, The characteristic polynomial of a certain matrix of binomial coefficients. Fibonacci Q. 3, 81–89 (1965)

    MathSciNet  MATH  Google Scholar 

  4. W. Chu, L. Di Claudio, Binomial determinant evaluations. Ann. Comb. 9, 363–377 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Chu, Finite differences and determinant identities. Linear Algebra Appl. 430, 215–228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Chu, Binomial convolutions and determinant identities. Discrete Math. 204, 129–153 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Chu, X. Wang, W. Zhang, Partial fraction decomposition and determinant identities. Ars Comb. 109, 71–86 (2013)

    MathSciNet  MATH  Google Scholar 

  8. E. Kılıç, H. Prodinger, A generalized Filbert matrix. Fibonacci Q. 48, 29–33 (2010)

    MathSciNet  MATH  Google Scholar 

  9. E. Kılıç, H. Prodinger, The \(\mathit{q}\)-Pilbert matrix. Int. J. Comput. Math. 89, 1370–1377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Kılıç, H. Prodinger, Variants of the Filbert matrix. Fibonacci Q. 51, 153–162 (2013)

    MathSciNet  MATH  Google Scholar 

  11. E. Kılıç, H. Prodinger, Asymmetric generalizations of the Filbert matrix and variants. Publ. Inst. Math. (Beograd) (N.S) 95, 267–280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Kılıç, H. Prodinger, The generalized \(q\)-Pilbert matrix. Math. Slovaca 64, 1083–1092 (2014)

    MathSciNet  MATH  Google Scholar 

  13. E. Kılıç, H. Prodinger, The generalized Lilbert matrix. Period. Math. Hung. 73, 62–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Kılıç, H. Prodinger, The matrix of super Patalan numbers and its factorizations. Filomat 31, 2337–2344 (2017)

    Article  MathSciNet  Google Scholar 

  15. E. Kılıç, İ. Akkuş, G. Kızılaslan, A variant of the reciprocal super Catalan matrix with two additional parameters. Spec. Matrices 3, 163–168 (2015)

    MathSciNet  MATH  Google Scholar 

  16. E. Kılıç, T. Arıkan, The generalized reciprocal super Catalan matrix. Turk. J. Math. 40, 960–972 (2016)

    Article  MathSciNet  Google Scholar 

  17. E. Kılıç, N. Ömür, S. Koparal, Y. Ulutaş, Two variants of the reciprocal super Catalan matrix. Kyungpook Math. J. 56, 409–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Kılıç, T. Arıkan, A nonlinear generalization of the Filbert matrix and its Lucas analogue. Accepted in Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2017.1412393

  19. M. Merca, A note on the determinant of a Toeplitz-Hessenberg matrix. Spec. Matrices 1, 10–16 (2013)

    MathSciNet  MATH  Google Scholar 

  20. H. Prodinger, A generalization of a Filbert matrix with \(3\) additional parameters. Trans. R. Soc. S. Afr. 65, 169–172 (2010)

    Article  Google Scholar 

  21. H. Prodinger, The reciprocal super Catalan matrix. Spec. Matrices 3, 111–117 (2015)

    MathSciNet  MATH  Google Scholar 

  22. T. Richardson, The Filbert matrix. Fibonacci Q. 39, 268–275 (2001)

    MathSciNet  MATH  Google Scholar 

  23. J. Zhou, J. Zhaolin, The spectral norms of \(g\)-circulant matrices with classical Fibonacci and Lucas numbers entries. Appl. Math. Comput. 233, 582–587 (2014)

    MathSciNet  MATH  Google Scholar 

  24. J. Zhou, J. Zhaolin, Spectral norms of circulant-type matrices with Binomial coefficients and Harmonic numbers. Int. J. Comput. Methods 11, 1350076 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for carefully reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Koparal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kılıç, E., Koparal, S. & Ömür, N. New asymmetric generalizations of the Filbert and Lilbert matrices. Period Math Hung 78, 231–241 (2019). https://doi.org/10.1007/s10998-018-0253-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-018-0253-0

Keywords

Mathematics Subject Classification