Skip to main content
Log in

Weakly Douglas Finsler metrics

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this paper, we define a weaker notion of Douglas metrics, namely weakly Douglas metrics. A Finsler metric satisfies a projectively invariant equation \(D^i_{\,\,jkl}=T_{jkl} y^i\) for some tensor \(T_{jkl}\) is called a weakly Douglas metric. We show that every Randers manifold of dimension \(n\ge 3\) is a weakly Douglas metric if and only if it is a Douglas metric. Then, we prove that every Kropina manifold is a weakly Douglas metric if and only if it is a Douglas metric. It turns out that every Kropina surface is a Douglas surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. R. Belg. Bull. Cl. Sci. (5) 80, 271–322 (1988)

    MATH  Google Scholar 

  2. G.S. Asanov, Finsler Geometry, Relativity and Gauge Theories (D. Reidel Publishing Company, Dordrecht, Holland, 1985)

    Book  Google Scholar 

  3. S. Bácsó, M. Matsumoto, On Finsler spaces of Douglas type, a generalization of notion of Berwald space. Publ. Math. Debrecen. 51, 385–406 (1997)

    MathSciNet  MATH  Google Scholar 

  4. S. Bácsó, M. Matsumoto, On Finsler spaces of Douglas type IV: projectively flat Kropina spaces. Publ. Math. Debrecen. 56, 213–221 (2000)

    MathSciNet  MATH  Google Scholar 

  5. S. Bácsó, I. Papp, A note on generalized Douglas space. Period. Math. Hung. 48(1–2), 181–184 (2004)

    Article  MathSciNet  Google Scholar 

  6. S. Bácsó, R. Yoshikawa, Weakly-Berwald spaces. Publ. Math. Debrecen. 61, 219–231 (2002)

    MathSciNet  MATH  Google Scholar 

  7. R.S. Ingarden, Geometry of Thermodynamics, Diff. Geom. Methods in Theor. Phys., XV Intern. Conf. Clausthal 1986 (World Scientific, Singapore, 1987)

  8. V.K. Kropina, On projective two-dimensional Finsler spaces with a special metric. Trudy Sem. Vektor. Tenzor. Anal. 11, 277–292 (1961)

    MathSciNet  Google Scholar 

  9. M. Matsumoto, S. Hōjō, A conclusive theorem on C-reducible Finsler spaces. Tensor. N. S. 32, 225–230 (1978)

    MathSciNet  MATH  Google Scholar 

  10. B. Najafi, Z. Shen, A. Tayebi, On a projective class of Finsler metrics. Publ. Math. Debrecen. 70, 211–219 (2007)

    MathSciNet  MATH  Google Scholar 

  11. B. Najafi, Z. Shen, A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties. Geom. Dedicata. 131, 87–97 (2008)

    Article  MathSciNet  Google Scholar 

  12. B. Najafi, A. Tayebi, A new quantity in Finsler geometry. C. R. Acad. Sci. Paris Ser. I. 349, 81–83 (2011)

    Article  MathSciNet  Google Scholar 

  13. E. Peyghan, A. Tayebi, Generalized Berwald metrics. Turk. J. Math. 36, 475–484 (2012)

    MathSciNet  MATH  Google Scholar 

  14. G. Randers, On an asymmetric metric in the four-space of general relativity. Phys. Rev. 59, 195–199 (1941)

    Article  MathSciNet  Google Scholar 

  15. A. Tayebi, E. Peyghan, On Douglas surfaces. Bull. Math. Soc. Science. Math. Roumanie Tome 55(103), 327–335 (2012)

    MathSciNet  MATH  Google Scholar 

  16. A. Tayebi, H. Sadeghi, On generalized Douglas–Weyl \((\alpha, \beta )\)-metrics. Acta Math. Sin. Engl. Ser. 31(10), 1611–1620 (2015)

    Article  MathSciNet  Google Scholar 

  17. A. Tayebi, H. Sadeghi, E. Peyghan, On generalized Douglas–Weyl spaces. Bull. Malays. Math. Sci. Soc. (2) 36(3), 587–594 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professors László Kozma and Professor Zhongmin Shen for their valuable comments and their encouragements during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Najafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atashafrouz, M., Najafi, B. & Tayebi, A. Weakly Douglas Finsler metrics. Period Math Hung 81, 194–200 (2020). https://doi.org/10.1007/s10998-020-00335-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-020-00335-0

Keywords

Mathematics Subject Classification