Abstract
In this paper, we define a weaker notion of Douglas metrics, namely weakly Douglas metrics. A Finsler metric satisfies a projectively invariant equation \(D^i_{\,\,jkl}=T_{jkl} y^i\) for some tensor \(T_{jkl}\) is called a weakly Douglas metric. We show that every Randers manifold of dimension \(n\ge 3\) is a weakly Douglas metric if and only if it is a Douglas metric. Then, we prove that every Kropina manifold is a weakly Douglas metric if and only if it is a Douglas metric. It turns out that every Kropina surface is a Douglas surface.
Similar content being viewed by others
References
H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. R. Belg. Bull. Cl. Sci. (5) 80, 271–322 (1988)
G.S. Asanov, Finsler Geometry, Relativity and Gauge Theories (D. Reidel Publishing Company, Dordrecht, Holland, 1985)
S. Bácsó, M. Matsumoto, On Finsler spaces of Douglas type, a generalization of notion of Berwald space. Publ. Math. Debrecen. 51, 385–406 (1997)
S. Bácsó, M. Matsumoto, On Finsler spaces of Douglas type IV: projectively flat Kropina spaces. Publ. Math. Debrecen. 56, 213–221 (2000)
S. Bácsó, I. Papp, A note on generalized Douglas space. Period. Math. Hung. 48(1–2), 181–184 (2004)
S. Bácsó, R. Yoshikawa, Weakly-Berwald spaces. Publ. Math. Debrecen. 61, 219–231 (2002)
R.S. Ingarden, Geometry of Thermodynamics, Diff. Geom. Methods in Theor. Phys., XV Intern. Conf. Clausthal 1986 (World Scientific, Singapore, 1987)
V.K. Kropina, On projective two-dimensional Finsler spaces with a special metric. Trudy Sem. Vektor. Tenzor. Anal. 11, 277–292 (1961)
M. Matsumoto, S. Hōjō, A conclusive theorem on C-reducible Finsler spaces. Tensor. N. S. 32, 225–230 (1978)
B. Najafi, Z. Shen, A. Tayebi, On a projective class of Finsler metrics. Publ. Math. Debrecen. 70, 211–219 (2007)
B. Najafi, Z. Shen, A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties. Geom. Dedicata. 131, 87–97 (2008)
B. Najafi, A. Tayebi, A new quantity in Finsler geometry. C. R. Acad. Sci. Paris Ser. I. 349, 81–83 (2011)
E. Peyghan, A. Tayebi, Generalized Berwald metrics. Turk. J. Math. 36, 475–484 (2012)
G. Randers, On an asymmetric metric in the four-space of general relativity. Phys. Rev. 59, 195–199 (1941)
A. Tayebi, E. Peyghan, On Douglas surfaces. Bull. Math. Soc. Science. Math. Roumanie Tome 55(103), 327–335 (2012)
A. Tayebi, H. Sadeghi, On generalized Douglas–Weyl \((\alpha, \beta )\)-metrics. Acta Math. Sin. Engl. Ser. 31(10), 1611–1620 (2015)
A. Tayebi, H. Sadeghi, E. Peyghan, On generalized Douglas–Weyl spaces. Bull. Malays. Math. Sci. Soc. (2) 36(3), 587–594 (2013)
Acknowledgements
The authors would like to thank Professors László Kozma and Professor Zhongmin Shen for their valuable comments and their encouragements during preparation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Atashafrouz, M., Najafi, B. & Tayebi, A. Weakly Douglas Finsler metrics. Period Math Hung 81, 194–200 (2020). https://doi.org/10.1007/s10998-020-00335-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-020-00335-0