Skip to main content
Log in

Randers metrics based on deformations by gradient winds

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

This paper investigates the deformations of Riemannian metrics, in particular Hessian metrics, by Zermelo’s navigation under the action of the weak gradient winds. Various descriptions of the resulting Randers metrics are given in relation to other special classes of Finsler metrics, e.g., projectively flat, locally dually flat. We prove that the resulting Randers metric obtained from perturbation by a conformal gradient wind is locally dually flat if and only if the background Riemannian metric is homothetic with the Euclidean metric. The inverse problem answers the question, when a given Randers metric comes from a Hessian metric and a gradient vector field through the Zermelo deformation. Some relevant examples are indicated at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Amari, J. Armstrong, Curvature of Hessian manifolds. Differ. Geom. Appl. 33, 1–12 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Amari, H. Nagaoka, Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191 (American Mathematical Society, Providence, 2000)

    Google Scholar 

  3. D. Bao, C. Robles, Z. Shen, Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66(3), 377–435 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. L.A. Caffarelli, R.J. McCann, Free boundaries in optimal transport and Monge-Ampère obstacle problems. Ann. Math. 171(2), 673–730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Cheng, Z. Shen, Y. Zhou, On a class of locally dually flat Finsler metrics. Int. J. Math. 21(11), 1531–1543 (2010)

    Article  MATH  Google Scholar 

  6. S.-S. Chern, Z. Shen, Riemann-Finsler Geometry. Nankai Tracts in Mathematics (World Scientific, River Edge (N.J.), London, Singapore, 2005)

    Book  Google Scholar 

  7. P.M. Esfahani, D. Chatterjee, J. Lygeros, The stochastic reach-avoid problem and set characterization for diffusions. Automatica 70, 43–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Huang, M. Idir, Ch. Zuo, K. Kaznatcheev, L. Zhou, A. Asundi, Comparison of two-dimensional integration methods for shape reconstruction from gradient data. Opt. Laser Eng. 64, 1–11 (2015)

    Article  Google Scholar 

  9. P. Foulon, V.S. Matveev, Zermelo deformation of Finsler metrics by Killing vector fields. Electron. Res. Announc. Math. Sci. 25, 1–7 (2018)

    MathSciNet  MATH  Google Scholar 

  10. D.S. Freed, Special Kähler manifolds. Commun. Math. Phys. 203(1), 31–52 (1999)

    Article  MATH  Google Scholar 

  11. K. Ito, Ch. Reisinger, Y. Zhang, A neural network-based policy iteration algorithm with global \(H^{2}\)-Superlinear convergence for stochastic games on domains. Found. Comput. Math. 203(1), 31–52 (2020)

    Google Scholar 

  12. C. Le Guyader, Ch. Gout, A.-S. Macé, D. Apprato, Gradient field approximation: application to registration in image processing. J. Comput. Appl. Math. 240, 135–147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Le Guyader, D. Apprato, Ch. Gout, Spline approximation of gradient fields: applications to wind velocity fields. Math. Comput. Simul. 97, 260–279 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Li, X. Mo, On dually flat square metrics. Differ. Geom. Appl. 62, 60–71 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Liu, X. Mo, The explicit construction of all dually flat Randers metrics. Int. J. Math. 28, 1750058 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Remki, K. Abahri, M. Tahlaiti, R. Belarbi, Hygrothermal transfer in wood drying under the atmospheric pressure gradient. Int. J. Therm. Sci. 57, 135–141 (2012)

    Article  Google Scholar 

  17. C. Robles, Geodesics in Randers spaces of constant curvature. Trans. Am. Math. Soc. 359(4), 1633–1651 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Shen, Projectively flat Randers metrics with constant flag curvature. Math. Ann. 325, 19–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Z. Shen, Riemann-Finsler geometry with applications to information geometry. Chin. Ann. Math. 27B(1), 73–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Shen, Q.L. Xia, On conformal vector fields on Randers manifolds. Sci. China Math. 55, 1869–1882 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Shima, K. Yagi, Geometry of Hessian manifolds. Differ. Geom. Appl. 7(3), 277–290 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Shima, Level surfaces of non-degenerate functions in \({\mathbb{R}}^{n+1}\). Geom. Dedicata 50, 193–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Shima, Harmonicity of gradient mappings of level surfaces in a real affine space. Geom. Dedicata 56, 177–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Totaro, The curvature of a Hessian metric. Int. J. Math. 15(4), 369–391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Yano, The Theory of Lie Derivatives and its Applications (North-Holland, Amsterdam, 1957)

    MATH  Google Scholar 

  26. C. Yu, On dually flat Randers metrics. Nonlinear Anal. 95, 146–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Zermelo, Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung. ZAMM-Z. Angew. Math. Mech. 11(2), 114–124 (1931)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitute to the anonymous reviewers for a careful reading of the manuscript, several helpful and detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kopacz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldea, N., Kopacz, P. & Wolak, R. Randers metrics based on deformations by gradient winds. Period Math Hung 86, 266–280 (2023). https://doi.org/10.1007/s10998-022-00464-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-022-00464-8

Keywords

Mathematics Subject Classification