Skip to main content
Log in

Center manifolds for delay-differential equations with variable argument

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

For delay-differential equations with piecewise constant delay, we construct center invariant manifolds with the optimal regularity. More precisely, we consider perturbations that are either globally Lipschitz or of class \(C^1\). More generally, we consider Lipschitz and \(C^1\) perturbations of evolution families that need not be invertible and need not have bounded growth. Nevertheless, the solutions in the center invariant manifold are always unique and global.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aftabizadeh, J. Wiener, J.-M. Xu, Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. Am. Math. Soc. 99, 673–679 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. 66, 367–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Alonso, J. Hong, R. Obaya, Almost periodic type solutions of differential equations with piecewise constant argument via almost periodic type sequences. Appl. Math. Lett. 13, 131–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Barreira, C. Valls, Stable invariant manifolds for delay equations with piecewise constant argument. J. Differ. Equ. Appl. 24, 148–163 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Carr, Applications of Centre Manifold Theory, Applied Mathematical Sciences, vol. 35 (Springer, New York, 1981)

    Book  MATH  Google Scholar 

  6. N. Chafee, The bifurcation of one or more closed orbits from an equilibrium point of an autonomous differential equation. J. Differ. Equ. 4, 661–679 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Chafee, A bifurcation problem for functional differential equations of finitely retarded type. J. Math. Anal. Appl. 35, 312–348 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Chicone, Y. Latushkin, Center manifolds for infinite-dimensional nonautonomous differential equations. J. Differ. Equ. 141, 356–399 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.-N. Chow, K. Lu, \(C^k\) centre unstable manifolds. Proc. R. Soc. Edinb. Sect. A 108, 303–320 (1988)

    Article  MATH  Google Scholar 

  10. K. Cooke, J. Wiener, Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl. 99, 265–297 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. O. Diekmann, S. van Gils, S. Verduyn-Lunel, H.-O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis. Appl. Math. Sci. Vol. 110, Springer-Verlag, New York (1995)

  12. V. Fodcuk, Integral varieties for nonlinear differential equations with retarded arguments. Ukrain. Mat. Z. 21, 627–639 (1969). ((in Russian))

    MathSciNet  Google Scholar 

  13. V. Fodcuk, Integral manifolds for nonlinear differential equations with retarded arguments. Differencial’nye Uravnenija 6, 798–808 (1970). ((in Russian))

    MathSciNet  Google Scholar 

  14. J. Guckenheimer, P. Holmes, Nonlinear Oscillations: Dynamical System and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42 (Springer-Verlag, New York, 1983)

    Book  MATH  Google Scholar 

  15. J. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, vol. 3 (Springer-Verlag, New York, 1977)

    Book  Google Scholar 

  16. M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, vol. 583. (Springer-Verlag, Berlin-New York, 1977)

  17. K. Jayasree, S. Deo, On piecewise constant delay differential equations. J. Math. Anal. Appl. 169, 55–69 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Kelley, The stable, center-stable, center, center-unstable and unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Küpper, R. Yuan, On quasi-periodic solutions of differential equations with piecewise constant argument. J. Math. Anal. Appl. 267, 173–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Kurzweil, On approximation in real Banach spaces. Studia Math. 14, 214–231 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Kurzweil, Invariant manifolds for flows, Differential Equations and Dynamical Systems (Proc. Internat. Sympos., Mayaguez, PR, Academic Press. New York 1967, 431–468 (1965)

  22. J. Kurzweil, Invariant manifolds I. Comm. Math. Univ. Carolinae 11, 309–336 (1970)

    MATH  Google Scholar 

  23. E. Leach, J. Whitfield, Differentiable functions and rough norms on Banach spaces. Proc. Am. Math. Soc. 33, 120–126 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces. J. Differ. Equ. 65, 68–88 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Muroya, Persistence, contractivity and global stability in logistic equations with piecewise constant delays. J. Math. Anal. Appl. 270, 602–635 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Papaschinopoulos, Some results concerning a class of differential equations with piecewise constant argument. Math. Nachr. 166, 193–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Papaschinopoulos, Linearization near the integral manifold for a system of differential equations with piecewise constant argument. J. Math. Anal. Appl. 215, 317–333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44 (Springer-Verlag, New York, 1983)

    MATH  Google Scholar 

  29. V. Pliss, A reduction principle in the theory of stability of motion. Izv. Akad. Nauk SSSR Ser. Mat. 28, 1297–1324 (1964). ((in Russian))

    MathSciNet  MATH  Google Scholar 

  30. Y. Rong, The existence of almost periodic solutions of retarded differential equations with piecewise constant argument. Nonlinear Anal. 48, 1013–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Seifert, Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence. J. Differ. Equ. 164, 451–458 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Sijbrand, Properties of center manifolds. Trans. Am. Math. Soc. 289, 431–69 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations, Dynamics Reported Ser. Dyn. Syst. Appl., Vol. 2, Wiley, Chichester, pp. 89–169 (1989)

  34. A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynamics Reported Expositions Dyn. Systems (N.S.), Vol. 1, Springer, Berlin, pp. 125–163 (1992)

  35. J. Wiener, K. Cooke, Oscillations in systems of differential equations with piecewise constant argument. J. Math. Anal. Appl. 137, 221–239 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Wiener, V. Lakshmikantham, A damped oscillator with piecewise constant time delay. Nonlinear Stud. 7, 78–84 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Barreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by FCT/Portugal through CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreira, L., Valls, C. Center manifolds for delay-differential equations with variable argument. Period Math Hung 86, 172–190 (2023). https://doi.org/10.1007/s10998-022-00469-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-022-00469-3

Keywords

Mathematics Subject Classification