Skip to main content
Log in

Inertial extrapolation method for a class of generalized variational inequality problems in real Hilbert spaces

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose an inertial extrapolation method for solving a certain class of variational inequality problems more general than the classical variational inequality problems in real Hilbert spaces. Our proposed method is of viscosity-type and converges strongly to a solution of the aforementioned problem when the underlying/cost operator is pseudo-monotone and uniformly continuous; this makes our method to be potentially more applicable than most existing methods in the literature. To support our results numerically, we considered some examples in both finite and infinite dimensional Hilbert spaces and compared our results with other existing results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications. J. Ind. Manag. Optim. (2020). https://doi.org/10.3934/jimo.2020152

    Article  MATH  Google Scholar 

  2. T.O. Alakoya, L.O. Jolaoso, A. Taiwo, O.T. Mewomo, Inertial algorithm with self-adaptive stepsize for split common null point and common fixed point problems for multivalued mappings in Banach spaces. Optimization (2021). https://doi.org/10.1080/02331934.2021.1895154

    Article  MATH  Google Scholar 

  3. T.O. Alakoya, A. Taiwo, O.T. Mewomo, Y.J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann. Univ. Ferrara Sez. VII Sci. Mat. 67(1), 1–31 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Attouch, J. Peypouquet, P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.Y. Apostol, A.A. Grynenko, V.V. Semenov, Iterative algorithms for monotone bilevel variational inequalities. J. Comp. Appl. Math. 107, 3–14 (2012)

    Google Scholar 

  7. H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces CMS Books in Mathematics. (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  8. Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  9. Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Censor, T. Elfving, N. Kopf, T. Bortfield, The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer Verlag Series, Lecture Notes in Mathematics, ISBN 978-1-84882-189-7, (2009)

  13. C.E. Chidume, M.O. Nnakwe, Iterative algorithms for split variational inequalities and generalized split feasibility problems with applications. J. Nonlinear Var. Anal. 3, 127–140 (2019)

    MATH  Google Scholar 

  14. S.V. Denisov, V.V. Semenov, L.M. Chabak, Convergence of the Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators. Cybernet. Systems Anal. 51, 757–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Fichera, Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 34, 138–142 (1963)

    MATH  Google Scholar 

  16. A. Gibali, A new Split Inverse Problem and application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2, 243–258 (2017)

    MathSciNet  MATH  Google Scholar 

  17. A. Gibali, A new non-Lipschitzian projection method for solving variational inequalities in Euclidean spaces. J. Nonlinear Anal. Optim. 6, 41–51 (2015)

    MathSciNet  MATH  Google Scholar 

  18. A. Gibali, Y. Shehu, An efficient iterative method for finding common fixed point and variational inequalities in Hilbert. Optimization (2019). https://doi.org/10.1080/02331934.2018.1490417

    Article  MathSciNet  MATH  Google Scholar 

  19. E.C. Godwin, C. Izuchukwu, O.T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces. Boll. Unione Mat. Ital. 14(2), 379–401 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y.R. He, A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185, 166–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. He, C. Ling, H.K. Xu, A relaxed projection method for split variational inequalities. J. Optim. Theory Appl. 166, 213–233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. B.-S. He, Z.-H. Yang, X.-M. Yuan, An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300, 362–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, An Inertial Method for solving Generalized Split Feasibility Problems over the solution set of Monotone Variational Inclusions. Optimization (2020). https://doi.org/10.1080/02331934.2020.1808648

    Article  MATH  Google Scholar 

  24. C. Izuchukwu, C.C. Okeke, O.T. Mewomo, Systems of variational inequality problem and multiple-sets split equality fixed point problem for infinite families of multivalued type-one demicontractive-type mappings. Ukrainian Math. J. 71, 1480–1501 (2019)

    Google Scholar 

  25. S.H. Khan, T.O. Alakoya, O.T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach Spaces. Math. Comput. Appl. 25, 25 (2020)

    MathSciNet  Google Scholar 

  26. R. Kraikaew, S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. L.O. Jolaoso, A. Taiwo, T.O. Alakoya, O.T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem. Comput. Appl. Math. 39(1), 28 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. G.M. Korpelevich, An extragradient method for finding sadlle points and for other problems. Ekon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  29. J. Mashreghi, M. Nasri, Forcing strong convergence of Korpelevich’s method in Banach spaces with its applications in game theory. Nonlinear Anal. 72, 2086–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. G.N. Ogwo, C. Izuchukwu, K.O. Aremu, O.T. Mewomo, A viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard space. Bull. Belg. Math. Soc. Simon Stevin 27(2020), 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  31. G.N. Ogwo, C. Izuchukwu, K.O. Aremu, O.T. Mewomo, On \(\theta \)-generalized demimetric mappings and monotone operators in Hadamard spaces. Demonstr. Math. 53(1), 95–111 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. G.N. Ogwo, C. Izuchukwu, O.T. Mewomo, A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numer. Algebra Control Optim. (2021). https://doi.org/10.3934/naco.2021011

    Article  MATH  Google Scholar 

  33. G.N. Ogwo, C. Izuchukwu, O.T. Mewomo, Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity. Numer. Algorithms (2021). https://doi.org/10.1007/s11075-021-01081-1

    Article  MathSciNet  MATH  Google Scholar 

  34. M.A. Olona, T.O. Alakoya, A.O.-E. Owolabi, O.T. Mewomo, Inertial shrinking projection algorithm with self-adaptive step size for split generalized equilibrium and fixed point problems for a countable family of nonexpansive multivalued mappings. Demonstr. Math. 54, 47–67 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. M.A. Olona, T.O. Alakoya, A.O.-E. Owolabi, O.T. Mewomo, Inertial algorithm for solving equilibrium, variational inclusion and fixed point problems for an infinite family of strictly pseudocontractive mappings. J. Nonlinear Funct. Anal. 2021, 21 (2021)

    Google Scholar 

  36. A.O.-E. Owolabi, T.O. Alakoya, A. Taiwo, O.T. Mewomo, A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numer. Algebra Control Optim. (2021). https://doi.org/10.3934/naco.2021004

    Article  MATH  Google Scholar 

  37. S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Analysis: Theory, Methods and Applications 75(2), 742–750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Stampacchia, “Variational Inequalities", in: Theory and Appli-cations of Monotone Operators, Proceedings of the NATO Advanced Study Institute, Venice, Italy (Edizioni Odersi, Gubbio, Italy, 1968) pp. 102-192

  39. Y. Shehu, P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56(1), 1–21 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Shehu, X.H. Li, Q.L. Dong, An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numer. Algorithms (2019). https://doi.org/10.1007/s11075-019-00758-y

    Article  MATH  Google Scholar 

  41. A. Taiwo, T.O. Alakoya, O.T. Mewomo, Strong convergence theorem for solving equilibrium problem and fixed point of relatively nonexpansive multi-valued mappings in a Banach space with applications. Asian-Eur. J. Math. (2020). https://doi.org/10.1142/S1793557121501370

    Article  MATH  Google Scholar 

  42. A. Taiwo, T.O. Alakoya, O.T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms 86(4), 1359–1389 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Taiwo, L.O. Jolaoso, O.T. Mewomo, Inertial-type algorithm for solving split common fixed-point problem in Banach spaces. J. Sci. Comput. 86(1), 30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. D.V. Thong, D.V. Hieu, Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-017-0412-z

    Article  MathSciNet  MATH  Google Scholar 

  45. D.V. Thong, D.V. Hieu, New extragradient methods for solving variational inequality problems and fixed point problems, J. Fixed Point Theory Appl., 20 (2018), https://doi.org/10.1007/s110784-018-0610-x

  46. D.V. Thong, P.T. Vuong, Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities. Optimization Optimization (2019). https://doi.org/10.1080/02331934.2019.1616191

    Article  MATH  Google Scholar 

  47. M. Tian, B.-N. Jiang, Viscosity approximation Methods for a Class of generalized split feasibility problems with variational inequalities in Hilbert space. Numer. Funct. Anal. Optim. 40, 902–923 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Tian, B.-N. Jiang, Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Ineq. Appl. (2017). https://doi.org/10.1186/s13660-017-1397-9

    Article  MathSciNet  MATH  Google Scholar 

  49. W. Takahashi, H.K. Xu, J.C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-valued Var. Anal. 23(2), 205–221 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. H.K. Xu, Iterative methods for split feasibility problem in infinite-dimensional Hilbert space. Inverse Probl. 26, 10518 (2010)

    Article  MathSciNet  Google Scholar 

  51. H.K. Xu, Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Yang, H. Liu, Z. Liu, Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization (2018). https://doi.org/10.1080/02331934.2018.1523404

    Article  MathSciNet  MATH  Google Scholar 

  53. H. Zhou, Convergence theorems of fixed points for \(\kappa \)-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69(2), 456–462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous referees for their careful reading, constructive comments and fruitful suggestions that substantially improved the manuscript. The first author acknowledges with thanks the scholarship and financial support from the University of KwaZulu–Natal (UKZN) Doctoral Scholarship. The research of the second author is wholly supported by the National Research Foundation (NRF) South Africa (S& F-DSI/NRF Free Standing Postdoctoral Fellowship; Grant Number: 120784). The second author also acknowledges the financial support from DSI/NRF, South Africa Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) Postdoctoral Fellowship. The third author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant Number 119903). Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the CoE-MaSS and NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. T. Mewomo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Algorithms

Appendix A: Algorithms

Algorithm A.1

(The Algorithm in [48]) Let \(x_1 \in C\), define the sequences \(\{x_n\}\), \(\{y_n\}\) and \(\{t_n\}\) by

$$\begin{aligned} {} \left\{ \begin{array}{ll} y_n=P_C(x_n-\tau _n T^{*}(I-S)T x_n),\\ t_n=P_C(y_n-\lambda _n A(y_n)), \\ x_{n+1}=P_C(y_n-\lambda _n A(t_n)),\quad n\ge 1, \end{array} \right. \end{aligned}$$
(A.1)

where \(\{\tau _n\}\subset [a, b]\) for some \(a, b \in \left( 0, \dfrac{1}{\Vert T\Vert ^2}\right) \) and \(\{\lambda _n\} \subset [c, d]\) for some \(c,d \in \left( 0, \dfrac{1}{L}\right) , ~S:H_2 \rightarrow H_2\) is a nonexpansive mapping, and \(A:C\rightarrow H_1\) is a monotone and L-Lipschitz continuous operator.

Algorithm A.2

(The Algorithm in Tian and Jiang [47]) Let \(x_1 \in C\), define the sequences \(\{x_n\}\), \(\{y_n\}\), \(\{w_n\}\) and \(\{t_n\}\) by

$$\begin{aligned} {\left\{ \begin{array}{ll} y_n= P_C(x_n-\tau _n T^*(I-S)Tx_n),\\ t_n = P_C(y_n - \lambda _n A(y_n)),\\ w_n= P_C(y_n-\lambda _n A(t_n)),\\ x_{n+1}= \alpha _{n}g(x_n) + (1-\alpha _{n})w_n,~n\ge 1, \end{array}\right. } \end{aligned}$$
(A.2)

where \(\{\alpha _{n}\}\subset (0,1)\) with \(\lim \limits _{n\rightarrow \infty } \alpha _{n}=0\) and \(\sum _{n=1}^{\infty }\alpha _{n}=\infty \),   \(\{\tau _n\}\subset [a, b]\) for some \(a, b \in \left( 0, \dfrac{1}{\Vert T\Vert ^2}\right) \) and \(\{\lambda _n\} \subset [c, d]\) for some \(c,d \in \left( 0, \dfrac{1}{L}\right) ,~ S:H_2 \rightarrow H_2\) is a nonexpansive mapping, \(A:C\rightarrow H_1\) is a monotone and L-Lipschitz continuous operator and g is a contraction on C.

Algorithm A.3

(The Algorithm in Chidume and Nnakwe [13]) For \(x_1=x\in H_1, C_1=H_1 \) and \(W_1=H_1\), define the sequence \(\{x_n\}\) by

$$\begin{aligned} {\left\{ \begin{array}{ll} y_n^i=P_{C_i}\Big (x_n-{\tau }T^*(I-S_i)Tx_n \Big ), i=1,\cdots ,N\\ u_n^i=P_{C_i}\Big (y_n^i-\lambda _n A_i(y_n^i)\Big ), i=1,\cdots ,N\\ t_n^i=P_{C_i}\Big (y_n^i-\lambda _n A_i(u_n^i)\Big ), i=1,\cdots , N\\ C_n^i=\Big \{z\in H:\Vert t_n^i-z\Vert \le \Vert x_n-z\Vert \Big \}\\ W_n=\Big \{z\in H:\langle z-x_n,x-x_n\rangle \le 0\Big \}\\ x_{n+1}=P_{C_{n}}\cap W_nx, \forall n\ge 1, \end{array}\right. } \end{aligned}$$
(A.3)

where \(C_n=\cap ^N_{i=1}C_n^i, {\tau }\in \Big (0,\frac{1}{\Vert A\Vert ^2}\Big )\), \(\lambda _n\in \Big (0,\frac{1}{L}\Big ), C_i,i=1,\cdots ,N\) are nonempty closed and convex subsets of \(H_1\) such that \(C=\cap ^N_{i=1}C_i\ne \emptyset \),\(T:H_1\rightarrow H_2\) is a bounded linear operator such that \(T\ne 0\) and \( T^*\) is the adjoint of T. \(A_i:C_i\rightarrow H_1, i=1,\cdots ,N\) is a finite family of monotone and L-Lipschitz mappings and \(S_i:H_2\rightarrow H_2, ~i=1,\cdots ,N\) is a finite family of nonexpansive mappings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogwo, G.N., Izuchukwu, C. & Mewomo, O.T. Inertial extrapolation method for a class of generalized variational inequality problems in real Hilbert spaces. Period Math Hung 86, 217–238 (2023). https://doi.org/10.1007/s10998-022-00470-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-022-00470-w

Keywords

Mathematics Subject Classification