Skip to main content
Log in

On the power moments of the Weil spectrum

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(\mathbb {F}\) be a finite field and let d be a positive integer with \( \gcd \left( d, |\mathbb {F}^*|\right) =1\). Let \(\psi \) be the canonical additive character of \(\mathbb {F}\). The Weil spectrum associated with \(\mathbb {F}\) and d is the set \(\left\{ W_{\mathbb {F},d}(a): \ a\in \mathbb {F}^*\right\} \), where

$$\begin{aligned} W_{\mathbb {F},d}(a)=\sum _{x\in \mathbb {F}}\psi (x^d-ax). \end{aligned}$$

Let k be a non-negative integer. The k-th power moment of \(W_{\mathbb {F},d}\) is defined by

$$\begin{aligned} P_{\mathbb {F},d}^{(k)}=\sum _{a\in \mathbb {F}^*}W_{\mathbb {F},d}(a)^k. \end{aligned}$$

In this paper we give exact identities of \(P_{\mathbb {F},d}^{(k)}\) for \(k=3,4,5,6\) at special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aubry, D.J. Katz, P. Langevin, Cyclotomy of Weil sums of binomials. J. Number Theory 154, 160–178 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Cochrane, C. Pinner, Explicit bounds on monomial and binomial exponential sums. Q. J. Math. 62, 323–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences. Discrete Math. 16, 209–232 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. D.J. Katz, Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth. J. Combin. Theory Ser. A 119, 1644–1659 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.J. Katz, Divisibility of Weil sums of binomials. Proc. Am. Math. Soc. 143, 4623–4632 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. D.J. Katz, Weil sums of binomials: properties, applications, and open problems, in Combinatorics and finite fields: difference sets, polynomials, pseudorandomness and applications. (De Gruyter, Berlin, Boston, 2019), pp. 109–134

Download references

Acknowledgements

The authors are grateful to Professor Daniel J. Katz for helpful discussions during RICAM Special Semester on Multivariate Algorithms and Their Foundations in Number Theory at Linz, Austria, October 15–19, 2018. This work is supported by National Natural Science Foundation of China under Grant No. 12071368, and the Science and Technology Program of Shaanxi Province of China under Grants No. 2019JM-573 and 2020JM-026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehua Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Proof of Lemma 3.1

From the properties of residue systems we get

$$\begin{aligned} \Omega ^{(4,3)}&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_{2}\in \mathbb {F}} \sum _{x_{3}\in \mathbb {F}}\sum _{x_{4}\in \mathbb {F}}}_{x_1+x_{2}+x_3+x_4+1=0}}_{x_1^3+x_2^3+x_3^3+x_4^3+1=0}1 =\mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}}_{x_1+x_2+x_3=-1-x_4}}_{x_1^3+x_2^3+x_3^3=-1-x_4^3}1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}}_{x_1+x_2+x_3=-1-x_4}}_{(x_1+x_2+x_3)^3-(x_1^3+x_2^3+x_3^3)=(-1-x_4)^3-(-1-x_4^3)}1 \\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}} _{x_1+x_2+x_3=-1-x_4}} _{3(x_1+x_2)x_3^2+3(x_1+x_2)^2x_3+(x_1+x_2)^3-x_1^3-x_2^3=-3x_4(1+x_4)}1 \\&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{3(x_1+x_2)x_3^2+3(x_1+x_2)^2x_3+(x_1+x_2)^3-x_1^3-x_2^3 =-3\left( 1+x_1+x_2+x_3\right) \left( x_1+x_2+x_3\right) }1\\&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{3(x_1+x_2)x_3^2+3(x_1+x_2)^2x_3+(x_1+x_2)^3-x_1^3-x_2^3 =-3x_3^2-3(2(x_1+x_2)+1)x_3-3(x_1+x_2)^2-3(x_1+x_2)} 1\\&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{3(x_1+x_2+1)x_3^2+3(x_1+x_2+1)^2x_3+(x_1+x_2+1)^3-x_1^3-x_2^3-1=0} 1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{x_1+x_2+1\ne 0}} _{36(x_1+x_2+1)^2x_3^2+36(x_1+x_2+1)^3x_3+12(x_1+x_2+1)^4-12(x_1+x_2+1)(x_1^3+x_2^3+1)=0} 1 +\mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{x_1+x_2+1=0}} _{x_1^3+x_2^3+1=0} 1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{x_1+x_2+1\ne 0}} _{\left( 6(x_1+x_2+1)x_3+3(x_1+x_2+1)^2\right) ^2+3(x_1+x_2+1)^4-12(x_1+x_2+1)(x_1^3+x_2^3+1)=0} 1 +|\mathbb {F}|\mathop {\sum _{x_2\in \mathbb {F}}} _{-(x_2+1)^3+x_2^3+1=0} 1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{x_1+x_2+1\ne 0}} _{x_3^2+3(x_1+x_2+1)^4-12(x_1+x_2+1)(x_1^3+x_2^3+1)=0} 1 +|\mathbb {F}|\mathop {\sum _{x_2\in \mathbb {F}}} _{x_2(x_2+1)=0} 1. \end{aligned}$$

Let \(\eta \) denote the quadratic multiplicative character of \(\mathbb {F}\). We have

$$\begin{aligned} \Omega ^{(4,3)}&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}} _{x_1+x_2+1\ne 0} \left( 1+\eta (12(x_1+x_2+1)(x_1^3+x_2^3+1)-3(x_1+x_2+1)^4)\right) +2|\mathbb {F}|\\&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}} _{x_1+x_2+1\ne 0} \eta (12(x_1+x_2+1)(x_1^3+x_2^3+1)-3(x_1+x_2+1)^4) +|\mathbb {F}|^2-|\mathbb {F}| +2|\mathbb {F}|\\&= \mathop {\sum _{x\in \mathbb {F}}\sum _{y\in \mathbb {F}^*}} \eta \left( 12y(x^3+(y-x-1)^3+1)-3y^4\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{x\in \mathbb {F}}\sum _{y\in \mathbb {F}}} \eta \left( 12y(-3x(x+1)+3(x+1)^2y-3(x+1)y^2)+9y^4\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{x\in \mathbb {F}}\sum _{y\in \mathbb {F}}} \eta \left( 4y(x+1)(-x+(x+1)y-y^2)+y^4\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{x\in \mathbb {F}}\sum _{y\in \mathbb {F}}} \eta \left( y(y-1)((2x-(y-1))^2-(y+1)^2)+y^4\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( y(y-1)(z^2-(y+1)^2)+y^4\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( y(y-1)(z^2-(y+1)^2)+y^4\right) +\mathop {\sum _{y\in \mathbb {F}}} \eta \left( -y(y-1)(y+1)^2+y^4\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} (1+\eta (z))\eta \left( y(y-1)(z-(y+1)^2)+y^4\right) +\mathop {\sum _{y\in \mathbb {F}}} \eta \left( -y(y-1)(y+1)^2+y^4\right) \\&\quad + |\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( y(y-1)(z-(y+1)^2)+y^4\right) \\&\quad +\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( y(y-1)z^2+(y^4-y(y-1)(y+1)^2)z\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}} \eta \left( -y(y-1)(y+1)^2+y^4\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( y(y-1)(z-(y+1)^2)+y^4\right) -\mathop {\sum _{y\in \mathbb {F}}} \eta \left( -y(y-1)(y+1)^2+y^4\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( y(y-1)+(y^4-y(y-1)(y+1)^2)z^{-1}\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}} \eta \left( -y(y-1)(y+1)^2+y^4\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} _{y(y-1)\ne 0} \eta \left( y(y-1)(z-(y+1)^2)+y^4\right) +\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} _{y(y-1)=0} \eta \left( y^4\right) \nonumber \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( y(y-1)+(y^4-y(y-1)(y+1)^2)z\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= |\mathbb {F}|+\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( y(y-1)+(y^4-y(y-1)(y+1)^2)z\right) +|\mathbb {F}|^2+|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} _{y^4-y(y-1)(y+1)^2\ne 0} \eta \left( y(y-1)+(y^4-y(y-1)(y+1)^2)z)\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} _{y^4-y(y-1)(y+1)^2=0} \eta \left( y(y-1)\right) +|\mathbb {F}|^2+2|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} _{y^4-y(y-1)(y+1)^2\ne 0} \eta \left( y(y-1)+(y^4-y(y-1)(y+1)^2)z\right) -\mathop {\sum _{y\in \mathbb {F}}} _{y^4-y(y-1)(y+1)^2\ne 0} \eta \left( y(y-1)\right) \\&\quad + (|\mathbb {F}|-1)\mathop {\sum _{y\in \mathbb {F}}} _{y^4-y(y-1)(y+1)^2=0} \eta \left( y(y-1)\right) +|\mathbb {F}|^2+2|\mathbb {F}|\\&= -\mathop {\sum _{y\in \mathbb {F}}} \eta \left( y(y-1)\right) +|\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}}} _{y^4-y(y-1)(y+1)^2=0} \eta \left( y(y-1)\right) +|\mathbb {F}|^2+2|\mathbb {F}|\\&= -\mathop {\sum _{y\in \mathbb {F}^*}} \eta \left( 1-y\right) +|\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}^*}} _{y^2-y-1=0} \eta \left( y(y-1)\right) +|\mathbb {F}|^2+2|\mathbb {F}|\\&= 1+|\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}}} _{(2y-1)^2=5} 1 +|\mathbb {F}|^2+2|\mathbb {F}| =|\mathbb {F}|^2+(3+\eta (5))|\mathbb {F}|+1. \end{aligned}$$

This proves Lemma 3.1.

Appendix B: The Proof of Lemma 3.2

It is not hard to show that

$$\begin{aligned} \Omega ^{(5,3)}&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}} \sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}\sum _{x_5\in \mathbb {F}}} _{x_1+x_2+x_3+x_4+x_5+1=0}}_{x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+1=0}1 =\mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}\sum _{x_5\in \mathbb {F}}}_{x_1+x_2+x_3+x_4=-1-x_5}}_{x_1^3+x_2^3+x_3^3+x_4^3=-1-x_5^3}1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}\sum _{x_5\in \mathbb {F}}} _{x_1+x_2+x_3+x_4=-1-x_5}} _{(x_1+x_2+x_3+x_4)^3-(x_1^3+x_2^3+x_3^3+x_4^3)=(-1-x_5)^3-(-1-x_5^3)} 1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}\sum _{x_5\in \mathbb {F}}} _{x_1+x_2+x_3+x_4=-1-x_5}} _{3(x_1+x_2+x_3)x_4^2+3(x_1+x_2+x_3)^2x_4+(x_1+x_2+x_3)^3-(x_1^3+x_2^3+x_3^3)=-3x_5(1+x_5)} 1\\&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}} _{3(x_1+x_2+x_3)x_4^2+3(x_1+x_2+x_3)^2x_4+(x_1+x_2+x_3)^3-(x_1^3+x_2^3+x_3^3)=-3(x_1+x_2+x_3+x_4)(1+x_1+x_2+x_3+x_4)} 1\\&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}} _{3(x_1+x_2+x_3+1)x_4^2+3(x_1+x_2+x_3+1)^2x_4+(x_1+x_2+x_3+1)^3-(x_1^3+x_2^3+x_3^3+1)=0} 1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}} \sum _{x_4\in \mathbb {F}}} _{x_1+x_2+x_3+1\ne 0}} _{3(x_1+x_2+x_3+1)x_4^2+3(x_1+x_2+x_3+1)^2x_4+(x_1+x_2+x_3+1)^3-(x_1^3+x_2^3+x_3^3+1)=0} 1 +\mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}\sum _{x_4\in \mathbb {F}}} _{x_1+x_2+x_3+1=0}} _{x_1^3+x_2^3+x_3^3+1=0} 1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}\sum _{x_4\in \mathbb {F}}} _{x_1+x_2+x_3+1\ne 0}} _{36(x_1+x_2+x_3+1)^2x_4^2+36(x_1+x_2+x_3+1)^3x_4+12(x_1+x_2+x_3+1)^4-12(x_1+x_2+x_3+1)(x_1^3+x_2^3+x_3^3+1)=0} 1\\&\quad + |\mathbb {F}|\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}} _{x_1^3+x_2^3-(x_1+x_2+1)^3+1=0} 1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}\sum _{x_4\in \mathbb {F}}} _{x_1+x_2+x_3+1\ne 0}} _{(6(x_1+x_2+x_3+1)x_4+3(x_1+x_2+x_3+1)^2)^2+3(x_1+x_2+x_3+1)^4-12(x_1+x_2+x_3+1)(x_1^3+x_2^3+x_3^3+1)=0} 1\\&\quad + |\mathbb {F}|\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}} _{3(x_1+x_2)(x_1+1)(x_2+1)=0} 1\\&= \mathop {\mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}\sum _{x_4\in \mathbb {F}}} _{x_1+x_2+x_3+1\ne 0}} _{x_4^2+3(x_1+x_2+x_3+1)^4-12(x_1+x_2+x_3+1)(x_1^3+x_2^3+x_3^3+1)=0} 1 +|\mathbb {F}|(3|\mathbb {F}|-3). \end{aligned}$$

Let \(\eta \) denote the quadratic multiplicative character of \(\mathbb {F}\). From the properties of residue systems we have

$$\begin{aligned} \Omega ^{(5,3)}&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{x_1+x_2+x_3+1\ne 0} \left( 1+\eta (12(x_1+x_2+x_3+1)(x_1^3+x_2^3+x_3^3+1)-3(x_1+x_2+x_3+1)^4)\right) \\&\quad + 3|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{x_1\in \mathbb {F}}\sum _{x_2\in \mathbb {F}}\sum _{x_3\in \mathbb {F}}} _{x_1+x_2+x_3+1\ne 0} \eta \left( 12(x_1+x_2+x_3+1)(x_1^3+x_2^3+x_3^3+1)-3(x_1+x_2+x_3+1)^4\right) \\&\quad + |\mathbb {F}|^3-|\mathbb {F}|^2 +3|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{x\in \mathbb {F}}\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( 12z(x^3+y^3+(z-x-y-1)^3+1)-3z^4\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{x\in \mathbb {F}}\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( 12z(x^3+y^3+(z-x-y-1)^3+1)-3z^4\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{x\in \mathbb {F}}\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( z^4-4z(x+y+1)(x-z)(y+1-z)-4zy(y+1)\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{x\in \mathbb {F}}\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( z^4-z(y+1-z)((2x+y+1-z)^2-(y+1+z)^2)-4zy(y+1)\right) \\&\quad + |\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}}} \eta \left( z^4-z(y+1-z)(w^2-(y+1+z)^2)-4zy(y+1)\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}^*}} \eta \left( z^4-z(y+1-z)(w^2-(y+1+z)^2)-4zy(y+1)\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}^*}} \left( 1+\eta (w)\right) \eta \left( z^4-z(y+1-z)(w-(y+1+z)^2)-4zy(y+1)\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}^*}} \eta \left( z^4-z(y+1-z)(w-(y+1+z)^2)-4zy(y+1)\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}^*}} \eta \left( -z(y+1-z)w^2+(z^4+z(y+1-z)(y+1+z)^2-4zy(y+1))w\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}}} \eta \left( z^4-z(y+1-z)(w-(y+1+z)^2)-4zy(y+1)\right) \\&\quad - \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)\right) \\ \end{aligned}$$
$$\begin{aligned}&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}^*}} \eta \left( -z(y+1-z)+(z^4+z(y+1-z)(y+1+z)^2-4zy(y+1))w^{-1}\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}}} _{z(y+1-z)\ne 0} \eta \left( z^4-z(y+1-z)(w-(y+1+z)^2)-4zy(y+1)\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}}} _{z(y+1-z)=0} \eta \left( z^4-4zy(y+1)\right) \\&\quad + \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}^*}} \eta \left( -z(y+1-z)+(z^4+z(y+1-z)(y+1+z)^2-4zy(y+1))w\right) \\&\quad + |\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}\sum _{w\in \mathbb {F}}} _{z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)\ne 0} \eta \left( -z(y+1-z)+(z^4+z(y+1-z)(y+1+z)^2\right. \\&\quad \left. -4zy(y+1))w\right) \\&\quad - \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} _{z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)\ne 0} \eta \left( -z(y+1-z)\right) +|\mathbb {F}|\mathop {\sum _{z\in \mathbb {F}}} \eta \left( z^2(z-2)^2\right) \\&\quad + (|\mathbb {F}|-1)\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} _{z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)=0} \eta \left( -z(y+1-z)\right) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= |\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} _{z^4+z(y+1-z)(y+1+z)^2-4zy(y+1)=0} \eta \left( -z(y+1-z)\right) -\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} \eta \left( -z(y+1-z)\right) \\&\quad + |\mathbb {F}|(|\mathbb {F}|-2) +|\mathbb {F}|^3+2|\mathbb {F}|^2-3|\mathbb {F}|\\&= |\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} _{(y+1)(z^2-(y+1)z-(y-1)^2)=0} \eta \left( z^2-(y+1)z\right) -\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( z^2-(y+1)z\right) +|\mathbb {F}|^3\\&\quad +3|\mathbb {F}|^2\\&\quad -5|\mathbb {F}|\\&= |\mathbb {F}|(\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} _{y+1=0} \eta \left( z^2\right) +\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} _{z^2-(y+1)z-(y-1)^2=0} \eta \left( (y-1)^2\right) -\mathop {\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} _{y+1=0}} _{z^2-(y+1)z-(y-1)^2=0} \eta \left( z^2\right) ) \\&\quad - \mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} \eta \left( 1-(y+1)z^{-1}\right) +|\mathbb {F}|^3+3|\mathbb {F}|^2-5|\mathbb {F}|\\&= |\mathbb {F}|(\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} _{z^2-(y+1)z-(y-1)^2=0} 1 -\mathop {\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}^*}} _{y-1=0}} _{z^2-(y+1)z-(y-1)^2=0} 1 -2) -\mathop {\sum _{z\in \mathbb {F}^*}\sum _{y\in \mathbb {F}}} \eta \left( -zy-z+1\right) \\ \end{aligned}$$
$$\begin{aligned}&\quad + |\mathbb {F}|^3+4|\mathbb {F}|^2-6|\mathbb {F}|\\&= |\mathbb {F}|(\mathop {\sum _{y\in \mathbb {F}}\sum _{z\in \mathbb {F}}} _{(2z-y-1)^2-(y+1)^2-4(y-1)^2=0} 1 -1) -\mathop {\sum _{z\in \mathbb {F}^*}\sum _{y\in \mathbb {F}}} \eta \left( -zy-z+1\right) +|\mathbb {F}|^3+4|\mathbb {F}|^2-9|\mathbb {F}|\\&= |\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}}\sum _{w\in \mathbb {F}}} _{w^2-(5y^2-6y+5)=0} 1 +|\mathbb {F}|^3+4|\mathbb {F}|^2-10|\mathbb {F}|\\&= |\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}}} \left( 1+\eta (5y^2-6y+5)\right) +|\mathbb {F}|^3+4|\mathbb {F}|^2-10|\mathbb {F}|\\&= |\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}}} \eta \left( 5y^2-6y+5\right) +|\mathbb {F}|^3+5|\mathbb {F}|^2-10|\mathbb {F}|\\&= |\mathbb {F}|\mathop {\sum _{y\in \mathbb {F}}} \eta (5)\eta \left( (5y-3)^2+16\right) +|\mathbb {F}|^3+5|\mathbb {F}|^2-10|\mathbb {F}|\\&= |\mathbb {F}|\eta (5)\mathop {\sum _{y\in \mathbb {F}}} \eta \left( y^2+16\right) +|\mathbb {F}|^3+5|\mathbb {F}|^2-10|\mathbb {F}|\\&= |\mathbb {F}|\eta (5)(\mathop {\sum _{y\in \mathbb {F}^*}} \left( 1+\eta (y)\right) \eta \left( y+16\right) +1) +|\mathbb {F}|^3+5|\mathbb {F}|^2-10|\mathbb {F}|\\&= |\mathbb {F}|\eta (5)(\mathop {\sum _{y\in \mathbb {F}}} \eta \left( y+16\right) -1 +\mathop {\sum _{y\in \mathbb {F}^*}} \eta \left( 1+16y\right) +1) +|\mathbb {F}|^3+5|\mathbb {F}|^2-10|\mathbb {F}|\\&= |\mathbb {F}|\eta (5)(\mathop {\sum _{y\in \mathbb {F}}} \eta \left( 1+16y\right) -1) +|\mathbb {F}|^3+5|\mathbb {F}|^2-10|\mathbb {F}|\\&= |\mathbb {F}|^3+5|\mathbb {F}|^2-(10+\eta (5))|\mathbb {F}|. \end{aligned}$$

This completes the proof of Lemma 3.2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, Z. On the power moments of the Weil spectrum. Period Math Hung 86, 607–620 (2023). https://doi.org/10.1007/s10998-022-00493-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-022-00493-3

Keywords

Mathematics Subject Classification

Navigation