Skip to main content
Log in

On singular values of products of matrices and log-majorization

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

This article has been updated

Abstract

In this paper, we are concerned with the problem of improving the classical inequality \(s ( X Y ) \prec _{\log } s (X) \circ s (Y )\), where XY are \( n \times n \) matrices, s(A) denotes the vector of singular values of a matrix A, \(\circ \) is the Schur product on \( {{\mathbb {R}}}^{n}\) and \( \prec _{\log } \) stands for the log-majorization preorder on \( {{\mathbb {R}}}^{n}\). We show that \(s ( X Y ) \prec _{\log } s (X Z) \circ s (W ) \prec _{\log } s (X) \circ s (Y )\) for some special matrices Z and W depending on Y. Moreover, we prove that the operator \( Z \mapsto s (X Z) \circ s (Z)^{[-1]} \circ s (Y) \) is monotone. To this end we introduce an adequate preorder on the matrix space \({{\mathbb {M}}}_{n}\). Some related results are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 29 September 2023

    The original version of this article has been revised: The copyright year in its xml data has been corrected.

References

  1. S.A. Anderson, M.D. Perlman, Group-invariant analogues of Hadamard’s inequality. Linear Algebra Appl. 110, 91–116 (1988). https://doi.org/10.1016/0024-3795(83)90134-9

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl. 118, 163–243 (1989). https://doi.org/10.1016/0024-3795(89)90580-6

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Ando, Majorization and inequalities in matrix theory. Linear Algebra Appl. 199, 17–67 (1994). https://doi.org/10.1016/0024-3795(94)90341-7

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Ando, R.A. Horn, C.R. Johnson, The singular values of a Hadamard product: a basic inequality. Linear Multilinear Algebra 21(4), 345–365 (1987). https://doi.org/10.1080/03081088708817810

    Article  MathSciNet  MATH  Google Scholar 

  5. R.B. Bapat, Majorization and singular values. Linear Multilinear Algebra 21(3), 211–214 (1987). https://doi.org/10.1080/03081088708817794

    Article  MathSciNet  MATH  Google Scholar 

  6. R.B. Bapat, Majorization and singular values II. SIAM J. Matrix Anal. Appl. 10(4), 429–434 (1989). https://doi.org/10.1137/0610030

    Article  MathSciNet  MATH  Google Scholar 

  7. R.B. Bapat, Majorization and singular values III. Linear Algebra Appl. 145, 59–70 (1991). https://doi.org/10.1016/0024-3795(91)90287-7

    Article  MathSciNet  MATH  Google Scholar 

  8. R.B. Bapat, V.S. Sunder, On majorization and Schur products. Linear Algebra Appl. 72, 107–117 (1985). https://doi.org/10.1016/0024-3795(85)90147-8

    Article  MathSciNet  MATH  Google Scholar 

  9. M.L. Eaton, On group induced orderings, monotone functions, and convolution theorems, in Inequalities in Statistics and Probability. IMS Lectures Notes in Monograph Series, vol. 5, ed. by Y.L. Tong (Cornell University Library, Ithaca, 1984), pp.13–25

    Chapter  Google Scholar 

  10. M.L. Eaton, Group induced orderings with some applications in statistics. CWI Newsl. 16, 3–31 (1987)

    MathSciNet  Google Scholar 

  11. F. Hiai, Log-Majorizations and Norm Inequalities for Exponential Operators. Linear Operators (Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997), pp.119–181

  12. A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, 2nd edn. (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  13. M. Niezgoda, \(G\)-majorization inequalities for linear maps. Linear Algebra Appl. 292, 207–231 (1999). https://doi.org/10.1016/S0024-3795(99)00034-8

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Niezgoda, \(G\)-majorization inequalities for linear maps. II. Linear Multilinear Algebra 55(1), 1–17 (2007). https://doi.org/10.1080/03081080500139702

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Niezgoda, \(G\)-majorization inequalities and canonical forms of matrices. J. Convex Anal. 14(1), 35–48 (2007)

    MathSciNet  MATH  Google Scholar 

  16. M. Niezgoda, On triangle inequality for Miranda-Thompson’s majorization and gradients of increasing functions. Adv. Oper. Theory 5(3), 647–656 (2020). https://doi.org/10.1007/s43036-019-00023-y

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Niezgoda, Refinements of triangle like inequalities in Lie’s framework. Bull. Malays. Math. Sci. Soc. 44(1), 243–250 (2021). https://doi.org/10.1007/s40840-020-00955-2

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Niezgoda, On the largest singular value of a matrix and generalized inverses. Southeast Asian Bull. Math. (2022) (to appear)

  19. K. Okubo, Hölder-type norm inequalities for Schur products of matrices. Linear Algebra Appl. 91, 13–28 (1987). https://doi.org/10.1016/0024-3795(87)90057-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the anonymous referee for giving some inspiring comments and suggestions that improved the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Niezgoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niezgoda, M. On singular values of products of matrices and log-majorization. Period Math Hung 87, 205–214 (2023). https://doi.org/10.1007/s10998-022-00511-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-022-00511-4

Keywords

Mathematics Subject Classification