Skip to main content
Log in

Some results on a first-order neutral differential equation with piecewise constant mixed arguments

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this paper, we consider a first order neutral differential equation with piecewise constant mixed arguments. We show the existence and uniqueness of solutions of the equation together a given initial condition. Moreover, for the considered equation we establish the conditions of oscillatory and convergency. We also give some examples that illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.R. Aftabizadeh, J. Wiener, Oscillatory and periodic solutions of an equation alternately of retarded and advanced type. Appl. Anal. 23, 219–231 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.R. Aftabizadeh, J. Xu, J. Wiener, Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. Amer. Math. Soc. 99(4), 673–679 (1987). https://doi.org/10.2307/2046474

    Article  MathSciNet  MATH  Google Scholar 

  3. R.P. Agarwal, S.R. Grace, Asymptotic stability of certain neutral differential equations. Math. Comput. Model. 31, 9–15 (2000). https://doi.org/10.1016/S0895-7177(00)00056-X

    Article  MATH  Google Scholar 

  4. R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N. Sadovskii, Theory of equations of neutral type. Jour. Soviet. Maths. 24, 674–719 (1984)

    Article  Google Scholar 

  5. M.U. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. 66(2), 367–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.U. Akhmet, On the reduction principle for differential equations with piecewise constant argument of generalized type. J. Math. Anal. Appl. 336(1), 646–663 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Bereketoglu, G.S. Oztepe, Convergence of the solution of an impulsive differential equation with piecewise constant arguments. Miskolc Math. Notes 14(3), 801–815 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Bereketoglu, G.S. Oztepe, Asymptotic constancy for impulsive differential equations with piecewise constant argument. Bull. Math. Soc. Sci. Math. 57, 181–192 (2014)

    MathSciNet  MATH  Google Scholar 

  9. H. Bereketoglu, G. Seyhan, A. Ogun, Advanced impulsive differential equations with piecewise constant arguments. Math. Model. Anal. 15(2), 175–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Busenberg, K.L. Cooke, Models of Vertically Transmitted Diseases with Sequential-Continuous Dynamics, Nonlinear Phenomena in Mathematical Sciences (Academic Press, New York, 1982), pp.179–187

    MATH  Google Scholar 

  11. K.S. Chiu, T. Li, Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr. 292, 2153–2164 (2019). https://doi.org/10.1002/mana.201800053

    Article  MathSciNet  MATH  Google Scholar 

  12. K.S. Chiu, M. Pinto, Periodic solutions of differential equations with a general piecewise constant argument and applications. Electron. J. Qual. Theory Differ. Equ. 46, 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. K.L. Cooke, J. Wiener, Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl. 99, 265–297 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. K.L. Cooke, J. Wiener, An equation alternately of retarded and advanced type. Proc. Amer. Math. Soc. 99, 726–732 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Dai, M.C. Singh, On oscillatory motion of spring-mass systems subjected to piecewise constant forces. J. Sound Vib. 173, 217–233 (1994)

    Article  MATH  Google Scholar 

  16. L. Dai, M.C. Singh, An analytical and numerical method for solving linear and nonlinear vibration problems. Int. J. Solids Struct. 34, 2709–2731 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Elaydi, An Introduction to Difference Equations (Springer, New York, 2005)

    MATH  Google Scholar 

  18. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer Academic Publishers, Boston, 1992)

    Book  MATH  Google Scholar 

  19. J.R. Graef, M.K. Grammatikopoulos, P.W. Spikes, Asymptotic and oscillatory behavior of solutions of first order nonlinear neutral delay differential equations. J. Math. Anal. Appl. 155, 562–571 (1991). https://doi.org/10.1016/0022-247X(91)90019-V

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Guan, J. Shen, Asymptotic behavior of solutions of a first-order impulsive neutral differential equation in Euler form. Appl. Math. Lett. 24(7), 1218–1224 (2011). https://doi.org/10.1016/j.aml.2011.02.012

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Guan, Q. Wang, Asymptotic behavior of solutions of a nonlinear neutral generalized pantograph equation with impulses. Math. Slovaca 65(5), 1049–1062 (2015). https://doi.org/10.1515/ms-2015-0072

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Gyori, On approximation of the solutions of delay differential equations by using piecewise constant arguments. Int. J. Math. Math. Sci. 14, 111–126 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Gyori, G. Ladas, Linearized oscillations for equations with piecewise constant argument. Diff. Integral Equ 2, 123–131 (1989)

    MathSciNet  MATH  Google Scholar 

  24. J.K. Hale, Theory of Functional Differential Equations (Springer-Verlag, New York, 1977)

    Book  MATH  Google Scholar 

  25. J.K. Hale, E.F. Infante, F.S.P. Tsen, Stability in linear delay equations. J. Math. Anal. Appl. 105(2), 533–555 (1985). https://doi.org/10.1016/0022-247X(85)90068-X

    Article  MathSciNet  MATH  Google Scholar 

  26. Y.K. Huang, Oscillations and asymptotic stability of solutions of first order neutral differential equations with piecewise constant argument. J. Math. Anal. Appl. 149(1), 70–85 (1990). https://doi.org/10.1016/0022-247X(90)90286-O

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Jiang, J. Shen, Asymptotic behaviors of nonlinear neutral impulsive delay differential equations with forced term. Kodai Math. J. 35(1), 126–137 (2012). https://doi.org/10.2996/kmj/1333027258

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Jiang, J. Shen, Z. Ji, Asymptotic behavior of impulsive neutral delay differential equations with positive and negative coefficients of Euler form. Adv. Differ. Equ. 2018, 83 (2018). https://doi.org/10.1186/s13662-018-1503-4

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Ladas, Y.G. Sficas, Asymptotic behavior of oscillatory solutions. Hiroshima Math. J. 18, 351–359 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Li, J. Shen, Periodic boundary value problems of impulsive differential equations with piecewise constant argument. J. Nat. Sci. Hunan Norm. Univ. 25, 5–9 (2002)

    MathSciNet  MATH  Google Scholar 

  31. H. Liang, G. Wang, Existence and uniqueness of periodic solutions for a delay differential equation with piecewise constant arguments. Port. Math. 66(1), 1–12 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. M.I. Muminov, On the method of finding periodic solutions of second-order neutral differential equations with piecewise constant arguments. Adv. Difference Equ. 2017, 336 (2017). https://doi.org/10.1186/s13662-017-1396-7

    Article  MathSciNet  MATH  Google Scholar 

  33. M.I. Muminov, H.M.A. Murid, Existence conditions for periodic solutions of second-order neutral delay differential equations with piecewise constant arguments. Open Math. 18(1), 93–105 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Muroya, New contractivity condition in a population model with piecewise constant arguments. J. Math. Anal. Appl. 346(1), 65–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. P.T. Nam, V.N. Phat, An improved stability criterion for a class of neutral differential equations. Appl. Math. Lett. 22, 31–35 (2009). https://doi.org/10.1016/j.aml.2007.11.006

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Nuchpong, S.K. Ntouyas, P. Thiramanus, J. Taribon, Asymptotic behavior of solutions of impulsive neutral differential equations with constant jumps. Differ. Equ. Appl. 9(2), 253–264 (2017)

    MathSciNet  MATH  Google Scholar 

  37. G. Papaschinopoulos, On a class of third order neutral delay differential equations with piecewise constant argument. Internat. J. Math. Math. Sci. 17, 113–118 (1994). https://doi.org/10.1155/S0161171294000153

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Papaschinopoulos, J. Schinas, Existence stability and oscillation of the solutions of first order neutral delay differential equations with piecewise constant argument. Appl. Anal. 44(1–2), 99–111 (1992). https://doi.org/10.1080/00036819208840070

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Papaschinopoulos, J. Schinas, Some results concerning second and third order neutral delay differential equations with piecewise constant argument. Czechoslovak Math. J. 44(119), 501–512 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. J.H. Park, Delay-dependent criterion for asymptotic stability of a class of neutral equations. Appl. Math. Lett. 17, 1203–1206 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. E.C. Partheniadis, Stability and oscillation of neutral delay differential equations with piecewise constant argument. Differ. Integral Equ. 1(4), 459–472 (1988)

    MathSciNet  MATH  Google Scholar 

  42. M. Pinto, Asymptotic equivalence of nonlinear and quasilinear differential equations with piecewise constant arguments. Math. Comput. Mod. 49(9–10), 1750–1758 (2009)

    Article  MATH  Google Scholar 

  43. S. Ruan, Oscillations of second-order neutral differential equations. Canad. Math. Bull. 36(4), 485–496 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Seifert, Second-order neutral delay-differential equations with piecewise constant time dependence. J. Math. Anal. Appl. 281(1), 1–9 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. S.M. Shah, J. Wiener, Advanced differential equations with piecewise constant argument deviations. Int. J. Math. Math. Sci. 6, 671–703 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. J.H. Shen, I.P. Stavroulakis, Oscillatory and nonoscillatory delay equations with piecewise constant argument. J. Math. Anal. Appl. 248, 385–401 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Shen, Y. Liu, J. Li, Asymptotic behavior of solutions of nonlinear neutral differential equations with impulses. J. Math. Anal. Appl. 332, 179–189 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Y.G. Sun, L. Wang, Note on asymptotic stability of a class of neutral differential equations. Appl. Math. Lett. 19, 949–953 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. G.Q. Wang, Periodic solutions of a neutral differential equation with piecewise constant arguments. J. Math. Anal. Appl. 326, 736–747 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa Emre Kavgaci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavgaci, M.E., Al Obaidi, H. & Bereketoglu, H. Some results on a first-order neutral differential equation with piecewise constant mixed arguments. Period Math Hung 87, 265–277 (2023). https://doi.org/10.1007/s10998-022-00512-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-022-00512-3

Keywords

Mathematics Subject Classification