Skip to main content
Log in

Global gradient estimates of porous medium equations under the Finsler-geometric flow

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In this paper, we consider a compact n-dimensional Finsler manifold \((M^{n},F(t),m)\) evolving under the Finsler-geometric flow and prove global gradient estimates for positive solutions of porous medium equations \(\partial _{t}u=\Delta _{m}u^{p}\) on \(M^{n}\) where \(\Delta _{m}\) is the Finsler-Laplacian. As applications, by integrating the gradient estimates, we derive Harnack type inequalities. Our results are natural extensions of similar results on Riemannian manifolds under the Riemannian-geometric flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abolarinwa, Gradient estimates for a nonlinear parabolic equation with potential under geometric flow. Electron. J. Differ. Equ. 2015(12), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  2. G. Aronson, P. Bénilan, Régularité des solutions de l’équation des milieux poreux dans \({\textbf{R} }^{N}\). C. R. Acad. Sci. Paris Sér. A-B 288(2), A103–A105 (1979)

    MATH  Google Scholar 

  3. S. Azami, A. Razavi, Existence and uniqueness for solutions of Ricci flow on Finsler manifolds. Int. J. Geom. Methods Mod. Phys. 10, 21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Azami, A. Razavi, Yamabe flow on Berwald manifolds. Int. J. Geom. Methods Mod. Phys. 12, 27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bailesteanu, X. Cao, A. Pulemotov, Gradient estimates for the heat equation under the Ricci flow. J. Funct. Anal. 258(10), 3517–3542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Bao, On two curvature-driven problems in Riemann-Finsler geometry. Finsler geometry, Sapporo 2005-in memory of Makoto Matsumoto, 19C71, Adv. Stud. Pure Math., 48, Math. Soc. Japan, Tokyo (2007)

  7. D. Bao, S. Chern, Z. Shen, An Introduction to Riemannian Finsler Geometry. Graduate Texts in Mathematics, vol. 200 (Springer, Berlin, 2000)

    Book  Google Scholar 

  8. B. Bidabad, M. Yar Ahmadi, On quasi-Einstein Finsler spaces. Bull. Iran. Math. Soc. 40, 921–930 (2014)

    MathSciNet  MATH  Google Scholar 

  9. B. Bidabad, M. Yar Ahmadi, On complete Finslerian Yamabe solitons. Differ. Geom. Appl. 66, 52–60 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. X. Cao, R.S. Hamilton, Differential Harnack estimates for the time-dependent heat equations with potentials. Geom. Funct. Anal. 19(4), 989–1000 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. H.D. Cao, M. Zhu, Aronson–Bénilan estimates for the porous medium equation under the Ricci flow. J. Math. Pures Appl. 104, 729–748 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. X. Cheng, Gradient estimates for positive solutions of heat equations under Finsler-Ricci flow. J. Math. Anal. Appl. 508, 125897 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Guo, M. Ishida, Harnack estimates for nonlinear backward heat equations in geometric flows. J. Funct. Anal. 267(8), 2638–2662 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. R.-S. Hamilton, The Harnack estimate for the Ricci flow. J. Differ. Geom. 37(1), 225–243 (1993)

    MathSciNet  MATH  Google Scholar 

  15. S.B. Hou, The Harnack estimate for a nonlinear parabolic equation under the Ricci flow. Acta Math. Sin. Engl. Ser. 27(10), 1935–1940 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. G.Y. Huang, Z.J. Huang, H. Li, Gradient estimates for the porous medium equations on Riemannian manifolds. J. Geom. Anal. 23(4), 1851–1875 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Ishida, Geometric flows and differential Harnack estimates for heat equations with potentials. Ann. Glob. Anal. Geom. 45(4), 287–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Lakzian, Differential Harnack estimates for positive solutions to heat equation under Finsler-Ricci flow. Pac. J. Math. 278(2), 447–462 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.Y. Li, Gradient estimate for the heat kernel of a complete Riemannian manifold and its applications. J. Funct. Anal. 97, 293–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Li, S.-T. Yau, On the parabolic kerneal of the Schröinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  21. Y. Li, X. Zhu, Li–Yau Harnack estimates for a heat-type equation under the geometric flow. Potential Anal. 52, 469–496 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Lu, L. Ni, J. Vázquez, C. Villani, Local Aronson–Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. 91, 1–19 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Ma, J. Li, Gradient estimates of porous medium equations under the Ricci flow. J. Geom. 105(2), 313–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Ohta, Finsler interplolation inequalities. Calc. Var. Partial. Differ. Equ. 36, 221–249 (2009)

    Article  Google Scholar 

  25. S. Ohta, K.-T. Sturm, Bochner–Weitzenböck formula and Li–Yau estimates on Finsler manifolds. Adv. Math. 252, 429–448 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Z.M. Shen, Lectures on Finsler geometry, World Scientific publishing Co.2001. Indiana Univ. Math. J. 26, 459–472 (1977)

    Article  MathSciNet  Google Scholar 

  27. J. Sun, Gradient estimates for positive solutions of the heat equation under geometric flow. Pac. J. Math. 253(2), 489–510 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.L. Vázquez, The Porous Medium Equation, Mathematical Theorey, Oxford Mathematical Monographs (The Clarendon Press Oxford University Press, Oxford, 2007)

    Google Scholar 

  29. W. Wang, H. Zhou, D. Xie, Local Aronson–Bénolan type gradient estimates for the porous medium type equation under the Ricci flow. Commun. Pure Appl. Anal. 17(5), 1957–1974 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. J.-Y. Wu, Differential Harnack inequalities for nonlinear heat equations with potentials under the Ricci flow. Pac. J. Math. 257, 199–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Zeng, Gradient estimates for a nonlinear heat equation under the Finsler-geometric flow. J. Part. Differ. Equ. 33(1), 17–38 (2020)

    MathSciNet  MATH  Google Scholar 

  32. F. Zeng, Q. He, Gradient estimates for a nonlinear heat equation under the Finsler-Ricci flow. Math. Slovaca 69(2), 409–424 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Zhao, Gradient estimates and Harnack inequalities of a parabolic equation under geometric flow. J. Math. Anal. Appl. 483, 123631 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahroud Azami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azami, S. Global gradient estimates of porous medium equations under the Finsler-geometric flow. Period Math Hung 87, 351–365 (2023). https://doi.org/10.1007/s10998-023-00521-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-023-00521-w

Keywords

Mathematics Subject Classification

Navigation