Skip to main content
Log in

On general divisor problems of Hecke eigenvalues of cusp forms

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let f be a primitive holomorphic cusp form of even integral weight k for the full modular group \(\Gamma =SL(2,{\mathbb {Z}})\). Let \(\lambda _{f}(n)\) denote the nth normalized Fourier coefficient of f. In this paper, we consider the general divisor problem of higher moments of \(\lambda _{f}(n)\), and also consider the same problem over sums of two squares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Clozel, J.A. Thorne, Level-raising and symmetric power functoriality I. Compos. Math. 150, 729–748 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Clozel, J.A. Thorne, Level-raising and symmetric power functoriality II. Ann. of Math. 181, 303–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Clozel, J.A. Thorne, Level-raising and symmetric power functoriality III. Duke Math. J. 166, 325–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Deligne, La Conjecture de Weil I. Inst. Hautes Études Sci. Pull. Math. 43, 273–307 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Gelbart, H. Jacquet, A relation between automorphic representations of \(GL(2)\) and \(GL(3)\). Ann. Sci.\(\acute{E}\)cole Norm. Sup., 11(1978), 471-542

  6. E. Hecke, Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Univ. Hamburg 5(1), 199–224 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  7. B.R. Huang, On the Rankin-Selberg problem. Math. Ann. 381(3/4), 1217–1251 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Iwaniec, E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloquium Publ. 53, Amer. Math. Soc. (Providence, RI, 2004)

  9. H. Kim, F. Shahidi, Cuspidality of symmetric power with applications. Duke Math. J. 112, 177–197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Kim, F. Shahidi, Functorial products for \(GL_{2}\times GL_{3}\) and functorial symmetric cube for \(GL_{2}\), with an appendix by C. J. Bushnell and G. Heniart, Ann. of Math., 155(2002), 837-893

  11. H. Kim, Functoriality for the exterior square of \(GL_{4}\) and symmetric fourth of \(GL_{2}\), Appendix 1 by D. Ramakrishan, Appendix 2 by H. Kim and P. Sarnak, J. Amer. Math. Soc., 16(2003), 139-183

  12. Y.-K. Lau, G.S. Lü, Sums of Fourier coefficients of cusp forms. Q. J. Math. 62(3), 687–716 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Newton, J.A. Thorne, Symmetric power functoriality for holomorphic modular forms. Publ. Math. Inst. Hautes Études Sci. 134, 1–116 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Newton, J.A. Thorne, Symmetric power functoriality for holomorphic modular forms II. Publ. Math. Inst. Hautes Études Sci. 134, 117–152 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Perelli, General \(L\)-functions. Ann. Math. Pura Appl. 130, 287–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. A. Rankin, Contributions to the theoryof Ramanujan’s function \(\tau (n)\) and similar arithmetical functions II. The order of the Fourier coefficients of the integral modular forms. Proc. Cambridge Philos. Soc., 35 (1939), 357-372

  17. R. A. Rankin, Sums of cusp form coefficients, In: Automorphic forms and anallytic number theory (Montreal, PQ, 1989), Univ. Montreal, Montreal, QC, 1990, pp. 115-121

  18. A. Selberg, Bemerkungen über eine Dirichletsche, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. 43, 47–50 (1940)

    MathSciNet  MATH  Google Scholar 

  19. F. Shahidi, Third symmetric power \(L\)-functions for \(GL(2)\). Compos. Math. 70, 245–273 (1989)

    MathSciNet  MATH  Google Scholar 

  20. J.R. Wilton, A note on Ramanujan’s arithmetical function \(\tau (n)\). Proc. Cambridge Philos. Soc. 25, 121–129 (1928)

    Article  MATH  Google Scholar 

  21. J. Wu, Power sums of Hecke eigenvalues and application. Acta Arith. 137(4), 333–344 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.R. Xu, General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 236, 214–229(2022)

  23. S. Zhai, Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133(11), 3862–3876 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Zhang, Some results on divisor problems related to cusp forms. Ramanujan J. 53(1), 75–83 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by The National Key Research and Development Program of China (Grant No. 2021YFA1000700), Natural Science Basic Research Program of Shaanxi (Program Nos. 2023-JC-QN-0024, 2023-JC-YB-077), Foundation of Shaanxi Educational Committee (2023-JC-YB-013) and Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSQ010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, G. On general divisor problems of Hecke eigenvalues of cusp forms. Period Math Hung 87, 340–350 (2023). https://doi.org/10.1007/s10998-023-00523-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-023-00523-8

Keywords

Mathematics Subject Classification

Navigation