Abstract
From S. Banach’s results it follows that even for the function \(f(x)=1\) \((x\in [0,1])\) the general partial sums of its general Fourier series are not bounded a.e. on [0, 1]. In the present paper, we find conditions for the functions \(\varphi _n\) of an orthonormal system \((\varphi _n\)) under which the partial sums of functions from some differentiable class are bounded. We prove that the obtained results are best possible. We also investigate the properties of subsequences of general orthonormal systems.
Similar content being viewed by others
References
S. Banach, Sur la divergence des séries orthogonales. (French) Studia Math. 9, 139–155 (1940)
L. Gogoladze, V. Tsagareishvili, Differentiable functions and general orthonormal systems. Mosc. Math. J. 19(4), 695–707 (2019)
D. Menchoff, Sur les séries de fonctions orthogonales. I: La convergence. (French) Fundam. Math. 4, 82–105 (1923)
H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. (German) Math. Ann. 87, 112–138 (1922)
W. Orlicz, Zur Theorie der Orthogonalreihen. (German) Bull. Acad. Polonaise (A) 1927, 81–115 (1927)
S. Kaczmarz, Über die Konvergenz der Reihen von Orthogonalfunktionen. (German) Math. Z. 23(1), 263–270 (1925)
K. Tandori, Über die orthogonalen Funktionen. I. (German) Acta Sci. Math. (Szeged) 18, 57–130 (1957)
A.M. Olevskii, Orthogonal series in terms of complete systems. (Russian) Mat. Sb. (N.S.) 58(100), 707–748 (1962)
J.R. McLaughlin, Integrated orthonormal series. Pac. J. Math. 42, 469–475 (1972)
S.V. Bockarev, Absolute convergence of Fourier series in complete orthogonal systems. (Russian) Uspehi Mat. Nauk 27(2(164)), 53–76 (1972)
B.S. Kašin, On Weyl’s multipliers for almost everywhere convergence of orthogonal series. Anal. Math. 2(4), 249–266 (1976)
L. Gogoladze, V. Tsagareishvili, Fourier coefficients of continuous functions. Transl. Mat. Zametki 91(5), 691–703 (2012); Math. Notes 91(5–6), 645–656 (2012)
G. Cagareishvili, General Fourier coefficients and problems of summability almost everywhere. Ann. Polon. Math. 126(2), 113–128 (2021)
V. Sh. Tsagareishvili, Absolute convergence of Fourier series of functions of the class \({\rm Lip}\,1\) and of functions of bounded variation. (Russian) translated from Izv. Ross. Akad. Nauk Ser. Mat. 76(2), 215–224 (2012); Izv. Math. 76(2), 419–429 (2012)
V.Sh. Tsagareishvili, General orthonormal systems and absolute convergence. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 84(4), 208–220 (2020)
V. Tsagareishvili, Some properties of general orthonormal systems. Colloq. Math. 162(2), 201–209 (2020)
V. Tsagareishvili, Some particular properties of general orthonormal systems. Period. Math. Hung. 81(1), 149–157 (2020)
P.L. Ul’janov, On Haar series. (Russian) Mat. Sb. (N.S.) 63(105), 356–391 (1964)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tsagareishvili, V. On the boundedness of general partial sums. Period Math Hung 88, 429–442 (2024). https://doi.org/10.1007/s10998-023-00565-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10998-023-00565-y