Skip to main content
Log in

On the boundedness of general partial sums

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

From S. Banach’s results it follows that even for the function \(f(x)=1\) \((x\in [0,1])\) the general partial sums of its general Fourier series are not bounded a.e. on [0, 1]. In the present paper, we find conditions for the functions \(\varphi _n\) of an orthonormal system \((\varphi _n\)) under which the partial sums of functions from some differentiable class are bounded. We prove that the obtained results are best possible. We also investigate the properties of subsequences of general orthonormal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Banach, Sur la divergence des séries orthogonales. (French) Studia Math. 9, 139–155 (1940)

    Article  Google Scholar 

  2. L. Gogoladze, V. Tsagareishvili, Differentiable functions and general orthonormal systems. Mosc. Math. J. 19(4), 695–707 (2019)

    Article  MathSciNet  Google Scholar 

  3. D. Menchoff, Sur les séries de fonctions orthogonales. I: La convergence. (French) Fundam. Math. 4, 82–105 (1923)

    Article  Google Scholar 

  4. H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. (German) Math. Ann. 87, 112–138 (1922)

    Article  Google Scholar 

  5. W. Orlicz, Zur Theorie der Orthogonalreihen. (German) Bull. Acad. Polonaise (A) 1927, 81–115 (1927)

    Google Scholar 

  6. S. Kaczmarz, Über die Konvergenz der Reihen von Orthogonalfunktionen. (German) Math. Z. 23(1), 263–270 (1925)

    Article  MathSciNet  Google Scholar 

  7. K. Tandori, Über die orthogonalen Funktionen. I. (German) Acta Sci. Math. (Szeged) 18, 57–130 (1957)

    Google Scholar 

  8. A.M. Olevskii, Orthogonal series in terms of complete systems. (Russian) Mat. Sb. (N.S.) 58(100), 707–748 (1962)

    MathSciNet  Google Scholar 

  9. J.R. McLaughlin, Integrated orthonormal series. Pac. J. Math. 42, 469–475 (1972)

    Article  MathSciNet  Google Scholar 

  10. S.V. Bockarev, Absolute convergence of Fourier series in complete orthogonal systems. (Russian) Uspehi Mat. Nauk 27(2(164)), 53–76 (1972)

  11. B.S. Kašin, On Weyl’s multipliers for almost everywhere convergence of orthogonal series. Anal. Math. 2(4), 249–266 (1976)

    Article  MathSciNet  Google Scholar 

  12. L. Gogoladze, V. Tsagareishvili, Fourier coefficients of continuous functions. Transl. Mat. Zametki 91(5), 691–703 (2012); Math. Notes 91(5–6), 645–656 (2012)

  13. G. Cagareishvili, General Fourier coefficients and problems of summability almost everywhere. Ann. Polon. Math. 126(2), 113–128 (2021)

    Article  MathSciNet  Google Scholar 

  14. V. Sh. Tsagareishvili, Absolute convergence of Fourier series of functions of the class \({\rm Lip}\,1\) and of functions of bounded variation. (Russian) translated from Izv. Ross. Akad. Nauk Ser. Mat. 76(2), 215–224 (2012); Izv. Math. 76(2), 419–429 (2012)

  15. V.Sh. Tsagareishvili, General orthonormal systems and absolute convergence. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 84(4), 208–220 (2020)

  16. V. Tsagareishvili, Some properties of general orthonormal systems. Colloq. Math. 162(2), 201–209 (2020)

    Article  MathSciNet  Google Scholar 

  17. V. Tsagareishvili, Some particular properties of general orthonormal systems. Period. Math. Hung. 81(1), 149–157 (2020)

    Article  MathSciNet  Google Scholar 

  18. P.L. Ul’janov, On Haar series. (Russian) Mat. Sb. (N.S.) 63(105), 356–391 (1964)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vakhtang Tsagareishvili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsagareishvili, V. On the boundedness of general partial sums. Period Math Hung 88, 429–442 (2024). https://doi.org/10.1007/s10998-023-00565-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-023-00565-y

Keywords