Skip to main content
Log in

On the Advantage (If Any) and Disadvantage of the Conceptual/Nonconceptual Distinction for Cognitive Science

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

In this article we question the utility of the distinction between conceptual and nonconceptual content in cognitive science, and in particular, in the empirical study of visual perception. First, we individuate some difficulties in characterizing the notion of “concept” itself both in the philosophy of mind and cognitive science. Then we stress the heterogeneous nature of the notion of nonconceptual content and outline the complex and ambiguous relations that exist between the conceptual/nonconceptual duality and other pairs of notions, such as top–down/bottom-up and modular/nonmodular. Finally we look in greater detail at the proposal developed by Jacob and Jeannerod (Ways of seeing. The scopes and limits of visual cognition. Oxford, UK: Oxford University Press, 2003), who apply the notion of nonconceptual content to empirical research on visual perception. After reconstructing their point of view on concepts, we try to reject their major arguments in support of the conceptual/nonconceptual distinction, i.e. the compositionality of thought and the fineness of grain of percepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Things are made more complex by the fact that also within the two fields considered separately this notion is used in a heterogeneous way, as we shall see in the following of this section.

  2. E. Spelke does not posit a sharp distinction between perceptual and conceptual knowledge, see e.g. Shutts and Spelke (2004).

  3. It should be noted that, according to Bermudez (1995), all nonconceptual content would have compositional structure, even if in a rather generic sense: “representational states must be structured so that they can be decomposed into their constituent elements which can then be recombined with the constituent elements of other representational states” (in Gunther 2003, p. 199).

References

  • Barsalou, L. W. (1985). Continuity of the conceptual system across species. Trends in Cognitive Sciences, 9(7), 305–311.

    Google Scholar 

  • Bermudez, J. L. (1995). Nonconceptual content: From perceptual experience to subpersonal computational states. Mind and Language, 10, 333–369. [Reprinted in Gunther (2003)].

    Google Scholar 

  • Bermudez, J. L. (2008). Nonconceptual mental content. Stanford Encyclopaedia of Philosophy, http://plato.stanford.edu/.

  • Biederman, I. (1995). Visual object recognition. In D. Oscherson (Ed.), An invitation to cognitive science (pp. 121–165). Cambridge, MA: MIT.

    Google Scholar 

  • Brandom, R. (1994). Making it explicit. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bullier, J. (2001a). Integrated model of visual processing. Brain Research. Brain Research Reviews, 36, 96–107. doi:10.1016/S0165-0173(01)00085-6.

    Article  Google Scholar 

  • Bullier, J. (2001b). Feedback connections and conscious vision. Trends in Cognitive Sciences, 5(9), 369–370. doi:10.1016/S1364-6613(00)01730-7.

    Article  Google Scholar 

  • Carruthers, P. (2002). Modularity, language, and the flexibility of thought. The Behavioral and Brain Sciences, 25(6), 705–719.

    Google Scholar 

  • Clark, A. (1994). Connectionism and cognitive flexibility. In T. Dartnall (Ed.), Artificial intelligence and creativity (pp. 63–79), Dorderecht: Kluwer. [Reprinted in Gunther (2003)].

  • Cussins, A. (1990). The connectionist construction of concepts. In M. Boden (Ed.), The philosophy of artificial intelligence (pp. 380–400). Oxford: Oxford University Press. Partially reprinted in Gunther (2003).

    Google Scholar 

  • Cussins, A. (2003). Postscript to the partial reprint of Cussins (1990). In Gunther (2003), (pp. 147–159).

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford, UK: Oxford University Press.

    MATH  Google Scholar 

  • Dennett, D. (1991). Consciousness explained. London: Penguin.

    Google Scholar 

  • Dennett, D. (1994). Get real. Philosophical Topics, 22, 505–568.

    Google Scholar 

  • Dennett, D. (1996). Seeing is believing–or is it? In K. Akins (Ed.), Perception (pp. 158–172). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Dennett, D. (2005). Sweet dreams. Cambridge, MA: MIT.

    Google Scholar 

  • Dretske, F. (1969). Seeing and knowing. Chicago: Chicago University Press.

    Google Scholar 

  • Dretske, F. (1981). Knowledge and the flow of information. Cambridge, MA: MIT.

    Google Scholar 

  • Dretske, F. (1995). Naturalising the mind. Cambridge, MA: MIT.

    Google Scholar 

  • Evans, G. (1982). The varieties of reference. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Fodor, J. (1998). Concepts. Where cognitive science went wrong. Oxford, UK: Clarendon.

    Google Scholar 

  • Fodor, J. (2003). Hume variations. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Frixione, M. (2007). Do concepts exist? A naturalistic point of view. In C. Penco, M. Beaney, & M. Vignolo (Eds.), Explaining the mental. Cambridge, UK: Cambridge Scholars Publishing.

    Google Scholar 

  • Gunther, Y. H. (Ed.). (2003). Essays on nonconceptual content. Cambridge, MA: MIT.

    Google Scholar 

  • Jacob, P., & Jeannerod, M. (2003). Ways of seeing. The scopes and limits of visual cognition. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Kosslyn, S. M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J. P., Thompson, W. L., et al. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science, 284(5411), 167–170. doi:10.1126/science.284.5411.167.

    Article  Google Scholar 

  • Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The case for mental imagery. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Machery, E. (2005). Concepts are not a natural kind. Philosophy of Science, 72, 444–467. doi:10.1086/498473.

    Article  Google Scholar 

  • Machery, E. (2009). Doing without concepts. Oxford, UK: Oxford University Press.

  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York, NY: Freeman.

    Google Scholar 

  • McDowell, J. (1994). Mind and world. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Milner, D. A., & Goodale, M. A. (1995). The visual brain in action. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT.

    Google Scholar 

  • Noe, A. (2004). Action in perception. Cambridge, MA: MIT.

    Google Scholar 

  • O’Regan, K., & Noe, A. (2001). A sensorimotor account of vision and visual consciousness. The Behavioral and Brain Sciences, 24, 939–1011.

    Article  Google Scholar 

  • Peacocke, C. (1992). A study of concepts. Cambridge, MA: MIT.

    Google Scholar 

  • Prinz, J., & Clark, A. (2004). Putting concepts to work: Some thoughts for the 21st century (a reply to Fodor). Mind & Language, 19(1), 57–69. doi:10.1111/j.1468-0017.2004.00247.x.

    Article  Google Scholar 

  • Raftopoulos, A., & Müller, V. (2006). The nonconceptual content of experience. Mind & Language, 27(2), 187–219. doi:10.1111/j.0268-1064.2006.00311.x.

    Article  Google Scholar 

  • Rizzolatti, G., & Gallese, V. (1997). From action to meaning. In J.-L. Petit (Ed.), Les Neurosciences et la Philosophie de l’Action. Paris: Librairie Philosophique J. Vrin.

    Google Scholar 

  • Rizzolatti, G., Sinigaglia, C., & Anderson, F. (2007). Mirrors in the brain: How our minds share actions, emotions, and experience. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Shutts, K., & Spelke, E. S. (2004). Straddling the perception-conception boundary. Developmental Science, 7, 507–511. doi:10.1111/j.1467-7687.2004.00371.x.

    Article  Google Scholar 

  • Spelke, E. S. (1994). Initial knowledge: Six suggestions. Cognition, 50, 431–445. doi:10.1016/0010-0277(94)90039-6.

    Article  Google Scholar 

  • Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 89–96. doi:10.1111/j.1467-7687.2007.00569.x.

    Article  Google Scholar 

  • Thompson, E. (1995). Colour vision. London, UK: Routledge Press.

    Google Scholar 

  • Tye, M. (2006). Nonconceptual content, richness, and fineness of grain. In T. Szabo-Gendler & J. Hawthorne (Eds.), Perceptual experience. Oxford, UK: Oxford University Press.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Marco Mazzone, Carlo Penco, Pietro Perconti and Alessio Plebe for reading earlier versions of this paper and for discussing the theses presented in it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Frixione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell’Anna, A., Frixione, M. On the Advantage (If Any) and Disadvantage of the Conceptual/Nonconceptual Distinction for Cognitive Science. Minds & Machines 20, 29–45 (2010). https://doi.org/10.1007/s11023-010-9182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-010-9182-2

Keywords

Navigation